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In this paper, the controllability of a special type of linear switched systems is
studied. Switch is carried out between two 2×2 matrices with purely imaginary
eigenvalues. Such a system describes oscillations of a spring pendulum with a
switchable sti�ness coe�cient. The main result of the work is an algorithm that
allows �nding a set of switching signals for switching from point to point, and
a theorem for switching systems with a block-diagonal matrix.
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Êîðîáîâ Â.I., Äåðåâ'ÿíêî À.I. Êåðîâàíiñòü ëiíiéíèìè äèíàìi÷íèìè

ñèñòåìàìè ïåðåìèêàííÿ ñïåöiàëüíîãî òèïó. Ó äàíié ðîáîòi âèâ÷à¹-
òüñÿ êåðîâàíiñòü ëiíiéíèõ ñèñòåì ïåðåìèêàííÿ ñïåöiàëüíîãî òèïó. Ïåðåìè-
êàííÿ âiäáóâà¹òüñÿ ìiæ äâîìà 2× 2 ìàòðèöÿìè ç ÷èñòî óÿâíèìè âëàñíèìè
çíà÷åííÿìè. Òàêà ñèñòåìà îïèñó¹ êîëèâàííÿ ïðóæèííîãî ìàÿòíèêà ç êîå-
ôiöi¹íòîì æîðñòêîñòi, ÿêèé ïåðåìèêà¹òüñÿ. Îñíîâíèì ðåçóëüòàòîì ðîáîòè
¹ àëãîðèòì, ùî äîçâîëÿ¹ âèçíà÷èòè íàáið ñèãíàëiâ ïåðåìèêàííÿ äëÿ ïåðå-
õîäó ç òî÷êè â òî÷êó, i òåîðåìà ïðî êåðîâàíiñòü äëÿ ñèñòåì ïåðåìèêàííÿ ç
áëî÷íî-äiàãîíàëüíîþ ìàòðèöåþ.
Êëþ÷îâi ñëîâà: ëiíiéíi ñèñòåìè ïåðåìèêàííÿ; êåðîâàíiñòü; ñïîñiá ïåðåìè-
êàííÿ; ïîòðàïëÿííÿ â çàäàíó òî÷êó; ïðóæèííèé ìàÿòíèê.

Êîðîáîâ Â.È., Äåðåâÿíêî À.È. Óïðàâëÿåìîñòü ëèíåéíûìè äèíàìè-

÷åñêèìè ñèñòåìàìè ïåðåêëþ÷åíèÿ ñïåöèàëüíîãî òèïà. Â äàííîé
ðàáîòå èçó÷àåòñÿ óïðàâëÿåìîñòü ëèíåéíûõ ñèñòåì ïåðåêëþ÷åíèÿ ñïåöè-
àëüíîãî òèïà. Ïåðåêëþ÷åíèå ïðîèñõîäèò ìåæäó äâóìÿ 2 × 2 ìàòðèöàìè ñ
÷èñòî ìíèìûìè ñîáñòâåííûìè çíà÷åíèÿìè. Òàêàÿ ñèñòåìà îïèñûâàåò êî-
ëåáàíèÿ ïðóæèííîãî ìàÿòíèêà ñ ïåðåêëþ÷àþùèìñÿ êîýôôèöèåíòîì æåñ-
òêîñòè. Îñíîâíûì ðåçóëüòàòîì ðàáîòû ÿâëÿåòñÿ àëãîðèòì, ïîçâîëÿþùèé
íàéòè íàáîð ñèãíàëîâ ïåðåêëþ÷åíèÿ äëÿ ïåðåõîäà èç òî÷êè â òî÷êó, è òå-
îðåìà îá óïðàâëÿåìîñòè äëÿ ñèñòåì ïåðåêëþ÷åíèÿ ñ áëî÷íî-äèàãîíàëüíîé
ìàòðèöåé.
Êëþ÷åâûå ñëîâà: ëèíåéíûå ñèñòåìû ïåðåêëþ÷åíèÿ; óïðàâëÿåìîñòü; ñïîñîá
ïåðåêëþ÷åíèÿ; ïîïàäàíèå â çàäàííóþ òî÷êó; ïðóæèííûé ìàÿòíèê.
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Introduction and Statement of the Problem

Switched systems is a special case of hybrid dynamical systems with discrete
and continuous dynamics. They are widely applied when a real system cannot
be described by one single model. Numerous examples are given by engineering
systems of electronics, power systems, tra�c control and others. Since the 1990s,
the issue of switched systems stability has become very popular (see [1], [3]). The
particular case of linear switched systems was considered in [2]. More modern
literature about switched systems is presented by works of Patrizio Colaneri [2],
Yuan Lin, Yuan Sun-Ge Wang, and Jiang-Wang [4], Zhong-Ping, Yuan Wang [5];
the question of stability remains popular nowadays.

In the present paper we consider one particular class of switched system from
the point of view of controllability property.

Let us recall the basic terminology. By a switched system we mean the followi-
ng system

ẋ(t) = fσ(t)(x(t)), x(0) = x0

where x ∈ Rm is called a continuous state, σ stands for a discrete state with values
from an index set M := {1, . . . , n}, and fk, for k ∈M , are given vector �elds.

The behavior of the dynamical system is regulated by the switching signal.
Namely, at some moments τ1 . . . τn the signal changes its value from σ(τi) to
σ(τi+1), hence the trajectory of the system, starting from t = τi, is given by
the vector �eld fσ(τi+1) instead of fσ(τi). In works on switched systems, switching
times can be random or given by some law. It is clear that stability depends both
on vector �elds and on the switching law.

In our work, we consider a slightly di�erent formulation of the problem,
namely, the switching signal is under our control.

We introduce the following de�nition.

De�nition 1 We say that the switched system

ẋ(t) = fσ(t)(x(t)), x(0) = x0

is controllable if for any two points there exists a switching signal that allows to
get from the �rst point to the second one.

This de�nition corresponds to the concept of controllability for control systems
of the form

ẋ = f(x, u), x(0) = x0,

where the control u(t) plays the role of a switching signal.
In this paper we consider linear switched systems (see [2]) of the form

ẋ(t) = Aσ(t)x(t), x(0) = x0 6= 0,

where A1 . . . An are given matrices. Our main goal is studying the case m = 2,
n = 2 with both systems having pure imaginary eigenvalues, which are introduced
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in Section 1. We show that such systems are controllable and propose an algori-
thm for constructing a controlling switching signal; the algorithm is presented in
Section 2. Section 3 contains one generalization.

1. Controllability of 2× 2 linear switched dynamical systems

Consider the problem of oscillation of a spring pendulum

ẍ = −kx,

with a switchable sti�ness coe�cient k > 0. Assume that we have a spring with
a sti�ness coe�cient k1, and we can change the sti�ness coe�cient of the system
by joining and removing an additional spring with a sti�ness coe�cient k2.

Two cases can be considered. If the springs are connected in parallel, the
parameter k of the system switches between k = k1 and k = k1 + k2. If the
connection is series, the parameter k of the system switches between k = k1 and
k = k1k2

k1+k2
.

Let us rewrite the di�erential equation of the pendulum occilations as a swi-
tched system:

ẋ(t) = Aix(t),

where

A1 =

[
0 1
−α 0

]
, A2 =

[
0 1
−β 0

]
.

For de�niteness, let us assume that we start and end with the �rst system.
Suppose that two nonzero points (initial (x1, y1) and ending (x2, y2)) are given.

So we have two cases: β > α and β < α. Notice that under the parallel
connection condition we can get only β > α.

1.1. Case α > β.

Rewrite coordinates of x as (x, y). Solutions of the system

ẋ(t) = A1(x(t)),

are of the form

x(t) = γ1 sin(
√
αt) + γ2 cos(

√
αt),

y(t) =
√
αγ1 sin(

√
αt)−

√
αγ2 cos(

√
αt),

(1)

while solutions of the system

ẋ(t) = A2(x(t)).

are of the form

x(t) = δ1 sin(
√
βt) + δ2 cos(

√
βt),

y(t) =
√
βδ1 sin(

√
βt)−

√
βδ2 cos(

√
βt).

(2)
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So the trajectories are given by ellipses of the following types:

x2 +
y2

α
= c2 (3)

(we call them horizontal ellipses) and

x2 +
y2

β
= c2 (4)

(we call them vertical ellipses). Phase portraits are presented in Fig. 1.

Fig. 1. Phase portraits for the �rst (left)
and the second (right) systems with α = 2, β = 1

2

Let the trajectory (1) go through the initial point (x1, y1) and the trajectory
(2) go through the end point (x2, y2). Denote

c1 = min(γ21 + γ22 ; δ21 + δ22)

and
c2 = max(γ21 + γ22 ; δ21 + δ22).

Let us �x the vertical ellipses x2+ y2

β = c21, x
2+ y2

β = c22 and �nd the conditions

under which they have a common horizontal ellipse x2 + y2

α = d2, i.e., intersecting
both.

Consider the smaller vertical ellipse x2 + y2

β = c21. The horizontal ellipse ci-

rcumscribing it looks like x2 + y2

α = α
β c

2
1 . Now we consider the bigger vertical

ellipse x2 + y2

β = c22. The horizontal ellipse inscribed in it is x2 + y2

α = c22. So
we get that intermediate horizontal ellipses (see Fig. 2) exist under the condition

c2 <
√

α
β c1. They have the form x2 + y2

α = d2, where d ∈ (c2;
√

α
β c1).

If this is not the case, that is, two ellipses of the �rst family do not have
a common ellipse of the second family, then we build the intermediate vertical
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Fig. 2. A(c1, 0), B(
√
α/βc1, 0), C(α/βc1, 0)

ellipse x2 + y2

β = α
β c

2
1, and repeat the described procedure. Now the condition of

existence of a common horizontal ellipse takes the form c2 <
α
β c1.

After N = [2 logα/β c2/c1] such steps we get the set of vertical and horizontal
ellipses. Thus, it is possible to organize getting from the initial point to the end
point. Therefore we have shown that the switched system is controllable.

1.2. Case α < β.

Now it is natural to refer to (3) as vertical ellipses and (4) as horizontal ellipses.

Unlike the previous case, the initial and end ellipses are horizontal (see Fig. 3).
Then the number of intermediate ellipses is also estimated as N = [2 logα/β c2/c1]
and the system is controllable.

Fig. 3. G(c1, 0), K(c2, 0), I(0,
√
αc1), H(

√
α
β c1), J(0, αβ c2)
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2. Algorithm of �nding the controlling switching signals

The obtained results allow us to propose an algorithm of getting from an initial
point to an end point for the system under consideration.

1. Get initial and �nal points (x1, y1), (x2, y2).

2. Calculate

c1,2 =

√
x21,2 +

y21,2
α
.

Build initial and �nal ellipses x21,2 +
y21,2
α = c21,2.

3. De�ne intervals [c1,
√

α
β c1], [c2,

√
α
β c2].

4. If there exists d ∈ [c1,
α
β c1] ∩ [c2,

α
β c2] then build ellipse x2 + y2

β = d2.

Otherwise de�ne c1 :=
√

α
β c1, build ellipses x

2
1,2 +

y21,2
α = c21, x

2 + y2

β = α
β d

2,

return to item 3.

5. Build N auxiliary ellipses till the intersection with x2 + y2

α = c22. Find
intersection points, get the way from point to point by choosing the closest
point in needed direction.

Consider the following example, which generalizes the system from [6, p. 6].

Suppose the matrices to be of the form

A1 =

[
0 1
−α 0

]
, A2 =

[
0 1

−1/α 0

]
α = 4, the initial point is (−50,−11), and we need to �nd the way to the point
(6, 1). Using the MATLAB program we get a collection of ellipses and a switching
path.

In our case the set of switching points is:

{(45.4832, 44.3520), (0.0000, 48.3322), (24.1661, 0.0000), (0.0000, 12.0830)}

and one possible trajectory is drawn in Fig. 4.

3. Generalization

Let us suggest a generalization to linear switched systems of higher dimension.

Theorem 1 Let us consider a switched system of the form

ẋ(t) = Ai(x(t)), x(0) = x0 6= 0,
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Fig. 4. Possible trajectory

where Ai are block-diagonal matrices of dimension 2n× 2n

Ai =


A1
i1

0

A2
i

. . .

0 Ani

 , ij = 1, 2, i = (i1 . . . in), (5)

where Aji are given 2× 2 matrices. The switched system

ẋ(t) = Ai(x(t)), x(0) = x0 6= 0

is controllable if and only if the systems

ẋ(t) = Aji (x(t)), x(0) = x0 6= 0, i = 1, 2, j = 1 . . . n

are controllable.

Conclusion on the results and directions for further research

In this work, the controllability of switched linear systems of the special type
was studied.

Namely, linear switched system with purely imaginary eigenvalues of both
matrices are considered.

The main result of the work is an algorithm, that allows to �nd a set of
switching signals for getting from point to point.

We also formulated the theorem that states the controllability of the switched
system of one special type with a block-diagonal matrix.

In the future, we plan to study the behavior and controllability of switched
systems with di�erent types of eigenvalues (real and complex) and switched
systems of higher dimension.
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V. I. Korobov, A. I. Derevianko. Controllability of the linear switched dynamical

systems of the special type. Switched systems is a special case of hybrid dynamical
systems with discrete and continuous dynamics. They are widely applied when a real
system cannot be described by one single model. In theoretical works on switched systems,
switching signals and times can be random or given by some law. Stability depends both
on vector �elds and on the switching law. In the present paper, a di�erent formulation of
the problem is considered, that is the case, when switching signal is under our control.
Namely, a switched system is called controllable if for any two points there exists a
switching signal that allows to get from the �rst point to the second one. In the paper the
controllability of linear switched systems of a special type is studied. More speci�cally, we
consider a switch, that is carried out between two 2× 2 matrices with purely imaginary
eigenvalues of both matrices. In the �rst section we discuss the physical meaning of
switched systems of this type. Namely, the problem of oscillation of a spring pendulum
with a switchable sti�ness coe�cient is considered with the series and parallel connection
of an additional spring to the system with one given spring. We prove that such a system
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is controllable, and propose the method of �nding the controlling switching signal. In the
second section we present the main result of the work. We formulate an algorithm that
allows �nding a set of switching signals for getting from any given initial point to any
given end point. We present an example of such controlling switching signals, simulated
in MATLAB. In the last section we propose a generalization of the obtained result and
formulate the theorem that states the controllability of the special type switched system
with a block-diagonal matrix of high dimension. The method presented in the paper
can be generalized to study of controllability of linear switched systems of more general
form.
Keywords: linear switched systems, controllability, switching way, getting to the given
point, spring pendulum.

Êîðîáîâ Â.I., Äåðåâ'ÿíêî À.I.Êåðîâàíiñòü ëiíiéíèìè äèíàìi÷íèìè ñèñòåìàìè
ïåðåìèêàííÿ ñïåöiàëüíîãî òèïó. Ñèñòåìè ïåðåìèêàííÿ � öå îêðåìèé âèïàäîê
ãiáðèäíèõ äèíàìi÷íèõ ñèñòåì ç äèñêðåòíîþ i íåïåðåðâíîþ äèíàìiêîþ. Âîíè øè-
ðîêî çàñòîñîâóþòüñÿ, êîëè ðåàëüíà ñèñòåìà íå ìîæå áóòè îïèñàíà îäíi¹þ ¹äèíîþ
ìîäåëëþ. Ó òåîðåòè÷íèõ ðîáîòàõ ïî ñèñòåìàì ïåðåìèêàííÿ ñèãíàëè i ÷àñ ïåðåìèêà-
ííÿ ìîæóòü áóòè âèïàäêîâèìè àáî êîíòðîëþâàòèñü ÿêèì-íåáóäü çàêîíîì. Ñòiéêiñòü
çàëåæèòü ÿê âiä âåêòîðíèõ ïîëiâ, òàê i âiä çàêîíó ïåðåìèêàííÿ. Ó äàíié ðîáîòi ðîç-
ãëÿäà¹òüñÿ iíøà ïîñòàíîâêà çàäà÷i, òîáòî âèïàäîê, êîëè ñèãíàë ïåðåìèêàííÿ çíàõî-
äèòüñÿ ïiä íàøèì êîíòðîëåì. À ñàìå, ñèñòåìà ïåðåìèêàííÿ íàçèâà¹òüñÿ êåðîâàíîþ,
ÿêùî äëÿ áóäü-ÿêèõ äâîõ òî÷îê iñíó¹ ñèãíàë ïåðåìèêàííÿ, ùî äîçâîëÿ¹ ïîòðàïèòè
ç ïåðøî¨ òî÷êè äî äðóãî¨. Ó ñòàòòi âèâ÷à¹òüñÿ êåðîâàíiñòü ëiíiéíèõ ñèñòåì ïåðå-
ìèêàííÿ ñïåöiàëüíîãî òèïó. Òî÷íiøå, ìè ðîçãëÿíåìî ïåðåìèêàííÿ, ÿêå âèêîíó¹òüñÿ
ìiæ äâîìà ìàòðèöÿìè 2× 2 ç ÷èñòî óÿâíèìè âëàñíèìè çíà÷åííÿìè îáîõ ìàòðèöü. Ó
ïåðøîìó ðîçäiëi ìè îáãîâîðþ¹ìî ôiçè÷íèé çìiñò ñèñòåì ïåðåìèêàííÿ öüîãî òèïó. À
ñàìå, çàäà÷à êîëèâàííÿ ïðóæèííîãî ìàÿòíèêà ç êîåôiöi¹íòîì æîðñòêîñòi, ùî ïåðå-
ìèêà¹òüñÿ, ðîçãëÿäà¹òüñÿ ïðè ïîñëiäîâíîìó i ïàðàëåëüíîìó ïðè¹äíàííi äîäàòêîâî¨
ïðóæèíè äî ñèñòåìè ç îäíi¹þ äàíîþ ïðóæèíîþ. Äîâîäèòüñÿ, ùî òàêà ñèñòåìà ¹ êå-
ðîâàíîþ, i ïðîïîíó¹òüñÿ ñïîñiá ïîøóêó ñèãíàëiâ ïåðåìèêàííÿ. Ó äðóãîìó ðîçäiëi ìè
ïðåäñòàâëÿ¹ìî îñíîâíèé ðåçóëüòàò ðîáîòè. Ôîðìóëþ¹òüñÿ àëãîðèòì, ÿêèé äîçâîëÿ¹
çíàéòè íàáið ñèãíàëiâ ïåðåìèêàííÿ äëÿ ïîòðàïëÿííÿ ç áóäü-ÿêî¨ ïî÷àòêîâî¨ òî÷êè
â áóäü-ÿêó çàäàíó êiíöåâó òî÷êó. Íàâåäåíî ïðèêëàä òàêîãî êåðóâàííÿ ïåðåìèêàëü-
íèìè ñèãíàëàìè, çìîäåëüîâàíèé â MATLAB. Â îñòàííüîìó ðîçäiëi ìè ïðîïîíó¹ìî
óçàãàëüíåííÿ îòðèìàíîãî ðåçóëüòàòó òà ôîðìóëþ¹ìî òåîðåìó, â ÿêié ñòâåðäæó¹òüñÿ
êåðîâàíiñòü ñèñòåìè ïåðåìèêàííÿ ñïåöiàëüíîãî òèïó ç áëî÷íî-äiàãîíàëüíîþ ìàòðè-
öåþ âèùî¨ ðîçìiðíîñòi. Ìåòîä, ïðåäñòàâëåíèé ó ñòàòòi, ìîæíà óçàãàëüíèòè äëÿ âè-
â÷åííÿ êåðîâàíîñòi ëiíiéíèõ ñèñòåì ïåðåìèêàííÿ áiëüø çàãàëüíîãî âèãëÿäó.
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òðàïëÿííÿ â çàäàíó òî÷êó; ïðóæèííèé ìàÿòíèê.
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