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Non-smooth systems of generalized MIMO triangular form

Svyatoslav S. Pavlichkov
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Following work [Korobov V.I., Pavlichkov S.S. Global properties of the
triangular systems in the singular case// J. Math. Anal. Appl. – 2008.
– 342. – P. 1426-1439], we consider the class of MIMO (multi-input and
multi-output) triangular systems of the so-called "generalized triangular
form"defined by the same conditions as in [Korobov V.I., Pavlichkov S.S.
Global properties of the triangular systems in the singular case // J. Math.
Anal. Appl. – 2008. – 342. – P. 1426-1439] except the following one: in
comparison with the above-mentioned work, we remove the assumption
about C1 - smoothness of the dynamics and assume that the dynamics
satisfies the local Lipschitz condition w.r.t. states and controls only. In the
current work, is proven that such a new class is globally controllable (by
means of controls from class Cµ with an arbitrary µ ≥ 0 including C∞).
The background of the proof is a modification of the construction proposed
in [Korobov V.I., Pavlichkov S.S. Global properties of the triangular
systems in the singular case // J. Math. Anal. Appl. – 2008. – 342. –
P. 1426-1439]. Whereas this new class is wider than that from [Korobov
V.I., Pavlichkov S.S. Global properties of the triangular systems in the
singular case // J. Math. Anal. Appl. – 2008. – 342. – P. 1426-1439]
to some extent, we prove its global controllability only (while in the
above-mentioned work stronger results were obtained for the C1 - case).

2000 Mathematics Subject Classification 93C10, 93B10, 93B11, 93B05,
93B52.

1. Introduction.

This work is devoted to nonlinear systems of the form
{

ẋi = fi(x1, ..., xi+1), i = 1, ..., n− 1;
ẋn = fn(x1, ..., xn, u);

(1)

which is called "triangular"form (TF). Beginning with Korobov’s work [10], this
class has been explored extensively in various directions - [1, 3, 6, 11, 12, 13, 17,
18, 20]. This interest was motivated by different strands of research in nonlinear
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control theory: exact linearization and feedack equivalence [6, 7], stabilization and
adaptive control [8, 14, 20], mechanics and other applications - [13].

Originally, TF was considered in the so-called "regular case" ∂fi

∂xi+1
6= 0, 1 ≤ i ≤

n, which means [7, 10] that (1) can be brought to the Brunovsky linear canonical
form by means of a diffeomorphism z = Φ(x), v = Ψ(x, u) at least locally -
see the well-known Jakubczyk-Respondek-Hunt-Su-Meyer-Krischenko conditions.
Although (to our best knowledge) the first work devoted to the singular case was
[17] (1986), during the last 15 years, the singular case has received a lot of attention
- [3, 21, 12]. In the latter work [12], the authors tried to intorduce and study as wide
class of the TF as possible so that this new class could be potentially treated as a
global nonlinear analog of the Brunovsky forms ẋ1 = x2, . . . , ẋn−1 = xn, ẋn = u.
This naturally leads to the class defined by the following conditions 1 and 2 only
- [12]:

1. The dynamics of the system (1) is continuously differentiable i.e., fi ∈ C1

(It is natural to require some smoothness at least of class C1, if we want
to speak of this generalized TF in the context of feedback equivalence, which is
apparently possible - see [15])

2. All the functions fi(t, x1, ..., xi, ·), i = 1, . . . , n, are surjective
(It is necessary ro require some dependence of each fi on xi+1, because, if some

fi does not depend on xi+1 at all, the triangular system has an uncontrollable
part. Condition 2 is a global nonlinear analog of the local condition ∂fi

∂xi+1
6= 0,

1 ≤ i ≤ n, and condition 2 seems to be as general as possible if one wants to
speak of global controllability)

Note that system (1) can be MIMO, i.e., xi and u are not necessarily scalar
in conditions 1, 2.

However, it is natural to try to generalize assumption 1 to some extent: instead
of C1 - smoothness, one may want to require the local Lipschitz condition only. In
this case, first, the construction from [12] should be revised significantly (because
the assumption fi ∈ C1 was essential in [12]), and, second, some properties
obtained in [12, 15] are lost (it is impossible to speak of feedback equivalence
and it is not clear how to obtain main Theorems 3.1, 3.2 from [12]).

Nevertheless, it appears that systems of such a new class are globally
controllable at least. The goal of the current paper is to prove the global
controllability for this new class.

2. Main result.

We consider a control system of the following form
{

ẋi = fi(t, x1, ..., zi+1), i = 1, ..., ν − 1;
ẋν = fν(t, x1, ..., xν , u);

t ∈ I = [t0, T ] (2)
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where x=(x1, ..., xν)
T∈Rn = Rm1+...+mν is the state (with xi∈Rmi and

n=m1+...+mν), u∈Rmν+1 is the control. We assume that the following conditions
hold

(i) fi ∈ C(I ×Rm1 × . . .×Rmi+1 ;Rmi), i = 1, . . . , ν;
(ii) Each fi satisfies the local Lipschitz condition w.r.t. (x, u), i.e., for every

i = 1, . . . , ν and every compact set K ⊂ Rm1 × . . . ×Rmi+1 there exists LK > 0
such that , for each t∈I, each (x1

1, ..., x
1
i+1)

T∈K and each (x2
1, ..., x

2
i+1)

T∈K, we
have:

|fi(t, x1
1, ..., x

1
i+1)− fi(t, x2

1, ..., x
2
i+1)| ≤ LK

i+1∑

j=1

|x1
j − x2

j |.

(iii) For every i=1, ..., ν, and every (t, x1, ..., xi) ∈ I × Rm1+...+mi , we have
fi(t, x1, ..., xi,Rmi+1) = Rmi .

Our main result is as follows.
Theorem 1 Assume that system (2) satisfies conditions (i),(ii),(iii). Then,

for every µ∈Z+∪{∞}, system (2) is globally controllable by means of controls
from class Cµ(I;Rmν+1).

Throughout the paper, for each τ∈I, each x0∈Rn, and each u(·)∈L∞(I;Rmν+1),
by t 7→x(t, τ, x0u(·)) we denote the trajectory, of system (2), defined by this
control u(·) and by the initial condition x(τ)=x0 on some maximal subinterval
J⊂I. (Thus, by the well-known definition, Theorem 1 states that, whatever
µ∈Z+⊂{∞}, for each x0∈Rn and each xT∈Rn there is u(·) in Cµ(I;Rmν+1)
such that x(t, t0, x0, u(·)) is defined for all t∈I and x(T, t0, x

0, u(·)) = xT ).

2. Proof of Theorem 1

The background of the proof is a certain backstepping technique which was
developed in our previous related works devoted to the triangular forms which
are not feedback linearizable - [11, 12, 15]. Roughly speaking, this means that we
resolve the problem of controllability by induction over ν = 1, 2, . . . . The main
obstacle we should obviate when following this pattern is that the dynamics of
our system (2) is no longer of class C1 (instead we have assumptions (i)-(ii) only).
On the other hand, in all the above-mentioned works, the assumption on C1 -
smoothness was essential as this argument begins with studying the linearized
control systems around a certain trajectory. To handle this problem, we note
that, in [12], the controllability of the linearized control system was used locally
in some neighborhood of some regular point only. The construction beyond this
neighborhood does not refer to any C1 - smoothness at all (see [12], Section 6).
Thus, it is natural to try to modify the argument from [12] accordingly. As we can
see from the proof, the disadvantage of such an extension is that, in contrast to
[12], we cannot speak of families of controls resolving the controllability problem
and, in particular, we cannot prove the controllability of the uniformly bounded
perturbations of system (2) (this is again because some properties of the linearized
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control system are essential, when construction such families in [12]). However
such a modification does work when proving global controllability (at least).

Fix an arbitrary p in {1, . . . , ν}. Define k:=m1+...+mp, y:=(x1, ..., xp)
T (with

xi∈Rmi , i=1, ..., p) and consider the k - dimensional control system

{
ẋi = fi(t, x1, ..., xi+1), i = 1, ..., p− 1;
ẋp = fp(t, x1, ..., xp, v);

t ∈ I (3)

with states y = (x1, ..., xp)
T ∈ Rk = Rm1+...+mp and controls v ∈ Rmp+1 .

Given y ∈ Rk, τ ∈ I, and v(·) in L∞(I;Rmp+1), by t 7→ y(t, τ, y, v(·)) denote
the trajectory, of system (3), defined by the control v(·) and by the initial condition
y(τ, τ, y, v(·)) = y on some maximal subinterval J ⊂ I.

The proof of Theorem 1 is in two steps.

Step 1. Let us first reduce Theorem 1 to the following statement.
Theorem 2 Let p be in {1, ..., ν}. Assume that, for every y0 ∈ Rk and every

δ > 0, there exists a family of functions {y(η, ·) = (x1(η, ·), ..., xp(η, ·))}η∈Rk such
that:

1) The map η 7→ y(η, ·) is of class C(Rk;C1(I;Rk))
2) For each η ∈ Rk we have

ẋi(η, t) = fi(t, x1(η, t), . . . , xi+1(η, t)), t ∈ I, 1 ≤ i ≤ p− 1;

(if p = 1, then we have 0 equalities, which means that Condition 2) is omitted by
definition)

3) y(η, t0) = y0 and |y(η, T )− η| < δ for all η ∈ Rk

Then, for every (y0, y0
k+1) ∈ Rk×Rmp+1 , every ε > 0 and every µ ∈ Z+∪{∞},

there exists a family of controls {v̂(η,β)(·)}(η,β)∈Rk×Rmp+1 such that
4) The map (η, β) 7→ v̂(η,β)(·) is of class C(Rk ×Rmp+1 ; Cµ(I;Rmp+1))
5) For each (η, β) ∈ Rk×Rmp+1 , we have v̂(η,β)(T ) = β and v̂(η,β)(t0) = y0

k+1.

6) For every (η, β) ∈ Rk × Rmp+1 , the trajectory t 7→ y(t, t0, y0, v̂(η,β)(·)) is
well-defined for all t ∈ I and |y(T, t0, y

0, v̂(η,β)(·))− η| < ε.

Let us first show that Theorem 2 implies Theorem 1. Assume that Theorem
2 is proved.

For p = 1, consider the corresponding m1 - dimensional system (3) and pick
any y0

1 ∈ Rm1 . Then, for each δ > 0, we easily get the existence of a family
{y(ξ, ·)}ξ∈Rm1 = {x1(ξ, ·)}ξ∈Rm1 such that conditions 1)-3) of Theorem 2 hold
(for instance, the family x1(ξ, t) := y0

1 + t−t0
T−t0

(ξ−y0
1) will suit). Then, for p=1, we

obtain: for every ε>0 every (y0
1, y

0
2)∈Rm1+m2 and every µ ≥ 1, there is a family

of controls {v̂(ξ,β)(·)}(ξ,β)∈Rm1×Rm2 such that conditions 4), 5), 6) of Theorem 2
hold with p=1.

Suppose p=2. Given any δ>0, and any y0=(y0
1, y

0
2)∈Rm1+m2 , put ε:=δ, and

(for this ε > 0) find the family {v̂(ξ,β)(·)}(ξ,β)∈Rm1×Rm2 obtained at the previous
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step (with p = 1). Then conditions 4)-6) for p = 1 imply that the family
{y(η, ·)}η=(ξ,β)∈Rm1×Rm2 given by

y(ξ, β, t) := (y(t, t0, y0
1, v̂(ξ,β)(·)), v̂(ξ,β)(t)), t ∈ I, η = (ξ, β) ∈ Rm1×Rm2

satisfies all the conditions 1), 2), 3) of Theorem 2 with p = 2. Then we can apply
Theorem 2 to p = 2, etc.

Arguing similarly by induction over p = 1, . . . , ν, we obtain (for p = ν) that
for each ε > 0, each µ ∈ N ∪ {∞}, each x0 ∈ Rν , and each α = y0

ν+1 there exists
a family of controls {v̂(η,β)(·)}(η,β)∈Rn×Rmν+1 such that conditions 4), 5), 6) of
Theorem 2 hold for p = ν. Fix any β ∈ Rmν+1 and define the family of controls
{uη(·)}η∈Rn by uη(t) := v̂(η,β)(t) for all η ∈ Rn. Then {uη(·)}η∈Rn satisfies the
following conditions:

(a) η 7→ uη(·) is of class C(Rn; Cµ(I;Rmν+1))

(b) For each η ∈ Rn, the trajectory t 7→ x(t, t0, x0, uη(·)) is well-defined and
|x(T, t0, x

0, uη(·))− η| < ε.

Given any µ ∈ N
⋃{∞} any ε > 0 an arbitrary x0 ∈ Rn, and an arbitrary

xT ∈ Rn, let {uη(·)}η∈Rn be a family of controls such that (a), (b) hold. Let
us prove the existence of η∗∈Rn such that x(T, t0, x

0, uη∗(·)) = xT . Indeed, by
condition (a), the map η 7→ η − x(T, t0, x

0, uη(·)) + xT is of class C(Rn;Rn)
(condition (b) implies that this map is well-defined). On the other hand, from
condition (b), it follows that the image of this map belongs to Bε(xT ). In
particular, η 7→ η − x(T, t0, x

0, uη(·)) + xT is a continuous map of a compact,
convex set Bε(xT ) into Bε(xT ), and then, using the Brouwer fixed-point theorem,
we get the existence of η∗ ∈ Rn such that

η∗ = η∗ − x(T, t0, x
0, uη∗(·)) + xT , i.e., x(T, t0, x

0, uη∗(·)) = xT .

Thus, for every x0 ∈ Rn, and every xT ∈ Rn, there is a control uη∗(·) ∈
Cµ(I;Rmν+1) such that xT = x(T, t0, x

0, uη∗(·)).
We have proved that Theorem 2 implies Theorem 1. Thus, it suffices to prove

Theorem 2.

Step 2: Proof of Theorem 2. Fix an arbitrary p in {1, . . . , ν} arbitrary
(y0, y0

k+1) ∈ Rk × Rmp+1 , arbitrary ε > 0, and µ ∈ Z+ ∪ {∞}. Define δ := ε
4

and let {y(η, ·)}η∈Rk satisfy conditions 1)-3) of Theorem 2.
To prove Theorem 2, we modify the pattern proposed in [12]. Along with (3),

we consider the k - dimensional system
{

ẋi(t) = fi(t, x1(t), ..., xi+1(t)), i = 1, ..., p− 1;
ẋp(t) = ω(t);

t ∈ I (4)

where x(t) = (x1(t), ..., xp(t))
T ∈ Rk is the state and ω(t) ∈ Rmp is the control.

For every y ∈ Rk, every τ ∈ I, and every ω(·) ∈ L∞(I;Rmp), let t 7→ z(t, τ, y, ω(·))
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denote the trajectory, of system (4), defined by this control ω(·) and by the initial
condition z(τ, τ, y, ω(·)) = y on some maximal subinterval J ⊂ I. Using conditions
2), 3) of Theorem 2, we obtain:

y(η, t) = z(t, t0, y0, ẋp(η, ·)) for all η ∈ Rk, t ∈ I (5)

Then we apply the Gronwall-Bellmann lemma and (arguing as in [16] Lemma
4.3, page 97) obtain the existence of σ(·) in C(Rk; ]0, +∞[) such that, for every
η ∈ Rk and every ω(·) ∈ L∞(I;Rmp+1), we have:

∀ t ∈ I |z(t, t0, y0, ω(·))− y(η, t)| < δ,

whenever ‖ ω(·)− ẋp(η, ·)‖L∞(I;Rmp+1 ) < σ(η) (6)

Next, arguing as in the proof of Lemma 5.1 from [12], we construct a family
{v(η, ·)}η∈Rk of controls defined on I and a function M(·) in C(Rk; ]0, +∞[) such
that:

(a1) For each η ∈ Rk, the control v(η, ·) is a piecewise constant function on I
and the map η 7→ v(η, ·) is of class C(Rk; L1(I;Rmp+1)).

(a2) For every η ∈ Rk, the trajectory t 7→ y(t, t0, y0, v(η, ·)) is defined for all
t∈I and

|ẋp(η, ·)− fp(t, y(t, t0, y0, v(η, ·)), v(η, t))| < σ(η) for all t ∈ I, η ∈ Rk

(a3) For every η ∈ Rk, we have ‖ v(η, ·) ‖L∞(I;Rk)< M(η)

Remark. Note that the proof of Lemma 5.1 from [12] does not actually require
any smoothness of fi. In [12], the condition fi ∈ C1 is used only when studying
the linearized control system in some neighborhood of some regular point. When
proving Lemma 5.1 from [12], we need only the existence and uniqueness of the
solution of the corresponding Cauchy problem. This is guaranteed by assumptions
(i), (ii) from the current paper as well, and, therefore, it is possible to repeat
this argument and get the existence of {v(η, ·)} and M(·) satisfying (a1), (a2),
(a3). The only difference between the current statement and Lemma 5.1 from
[12] is that, in the current conditions (a1)-(a3) and in (5), (6), the trajectories
t 7→ z(t, t0, y0, ω(·)) and t 7→ y(t, t0, y0, v(η, ·)) start from the initial instant t0
whereas, in [12] (formulae (25) and Lemma 5.1) similar trajectories start from
the terminal instant T. Thus, to obtain the existence of {v(η, ·)}η∈Rk and M(·) ∈
C(Rk; ]0,+∞[) which satisfy (a1),(a2),(a3), it suffices to repeat Section 6 from
[12] modulo to the substitution t 7→ (T−t).

Combining (5), (6) and (a2) (and taking into account (a1) along with the form
of systems (3), (4)), we obtain

|y(t, t0, y0, v(η, ·))− y(η, t))| < δ for all t ∈ I, η ∈ Rk (7)
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Finally, using partitions of unity and arguing as in [12] (the most detailed
presentation is given in [16]) we obtain the existence of a family of controls
{v̂η,β(·)}(η,β)∈Rk×Rmp+1 which satisfies Conditions 4) and 5) of Theorem 2 and
such that, for every (η, β)∈Rk ×Rmp+1 , the trajectory t 7→ y(t, t0, y0, v̂(η,β)(·)) is
well-defined for all t ∈ I and

|y(t, t0, y0, v̂(η,β)(·))− y(t, t0, y0, v(η, ·))| < δ for all t ∈ I, η ∈ Rk (8)

Combining (7), (8) with Assumption 3) of Theorem 2, and taking into account
that δ = ε

4 , we obtain that the family {v̂(η,β)(·)}(η,β)∈Rk×Rmp+1 satisfies Condition
6) of Theorem 2 as well.

The proof of Theorem 2 is complete. This completes the proof of Theorem 1.
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