Bicauk Xapkiscbkoro narionassnoro yuisepcurery imeni B.H. Kapasina
Cepist "Maremaruka, IpUKJIaHa MaTeMaTUKa 1 MexaHika"

VAK 517.982.22 Ne 826, 2008, ¢.185-196

Banach spaces of functions with the uniform Dini property

Le Minh Can
V.N. Karazin Kharkov National University

For a metric space K we define by D(K) the space of all functions on K,
whose modulus of continuity is satisfied the Dini condition at 0. We prove
that D(K) is dual if K is compact and D(K) is separable if K is a convex
compact subset of a Banach space. Other properties are studied for the
special case when K = [0, 1].
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1. Introduction

The famous Dini theorem says that for a continuous function f : (0,27) — R
satisfying the Dini condition at a point ¢ty € (0,27) its Fourier series converges
to f(tp) at the point tg. Consequently if the modulus of continuity of a periodic
function fulfills the Dini condition at 0, then the corresponding Fourier series
converges to the original function at all points. In this paper we introduce and
study the natural Banach space D(K) of functions which arise from the above
remark. The space definition makes sense on a general setting of continuous
functions on arbitrary metric compact K. At first we describe the behaviour
of Fourier series for f € D(T): we show that it converges uniformly, but not
necessarily in the norm of D(T). On the other hand, the theorem on Cesaro
convergence holds true in D(T) norm in its full strength. We show that D(T) is
non-reflexive and moreover contains a copy of ¢1. To do this we perform a study
of D(K) for a very special K = {t1,t2,...} C [0,1], where (¢,)32; behaves like
a geometric progression. In this special case we prove that D(K) has the Schur
property, but has no cotype. Then we pass to the properties of D(K) as a Banach
space. We show that D(K) is dual if K is compact and D(K) is separable if K is
a convex compact subset of a Banach space.

2. Basic definitions and notation
Now we introduce the following notion of the Dini space.
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Definition 1 Let K be a metric space, f : K — R be a real function. The
modulus of continuity f(r) of the function f is defined by

fr) =sup{|f(t) = f(T)] : t, 7 € K, p(t,T) <7}

1 f(r
Denote || fllo = Ji L2, || flloo = sup{|f(t)] : t € K}, | £] = max{|| f]lo, | f]loc}-
We call the space

D(K) ={f: K — R:|[|f|| < oo}

with the norm ||.|| the Dini space.

Recall the following well-known definitions.

Definition 2 A sequence (z,,)72, in a Banach space X is called a basic sequence

if it is a basis for [x,]00 .

Definition 3 Let (e,)22, be a basis for a Banach space X. Suppose that
(pn)22 € N is a strictly increasing sequence of integers with po = 0 and that
(an)22 are scalars. Then a sequence of nonzero vectors (uy)0>, in X of the form

Pn
Up — E a;€j

pn—1+1

is called a block basic sequence of (e,)5 ;.

It is well-known that every block basic sequence (u,)32 is a basic sequence.

Definition 4 A Banach space X has M-cotype r with constant C > 0 if the

mequality
maX{H 3 aqiil| s = il}z C(Z HxiH’">

holds for any finite collection of elements (x;)l" ;.

1
T

It is well-known that M-cotype is an isomorphic invariant and the space ¢; has
M-cotype r = 2(see [2]).

3. Fourier series in D(T)

Denote by D(T) the subspace of D[0, 27] consisting of functions satisfying the
condition f(0) = f(2x).

Let f be an absolutely integrable function on [0, 27]. Then the n-th partial
sum of its Fourier series at a point x equals

sin(n + 4)t

— dt.
sin §t

(Saf)@) = o [ Fle+a)
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Let p(t,z) = f(t + ) — f(x), then

4 sin(n + %
(Sn)(@) ~ f(2) = 5 / () SR 2)E

- sin %t
Theorem 1 (Dini’s criterion) (see [3], Section 699) Let f be a continuous

function on [0,27] and f(0) = f(2m). If there exists h > 0 such that for all

x € [0,27] the intergral fh el iz)ldt converges uniformly relatively to x then the
Fourier series of f coverges to f uniformly.

If f € D(T) then o(t,z) < f(t). But fl IO gt < 00, therefore the Fourier series
of f converges to it uniformly, i.e. ||S,f — f||oo —0.

Theorem 2 There exists a function f € D(T) such that the Fourier series of f
does not converge to f in the norm of D(T).

Proof. Denote by .S, the operator of the n-th partial sum of the Fourier series.
By the Banach-Steinhaus theorem, it is sufficient to show that sup{||Sy,|lo : n €
N} = 4o00. Fix any n € N and set § = nj:l in(n + 3)t = 0 for all ¢ = k4,
k€ [-n,n]NZ.

We will discuss the case when n is an even integer. We build on [—7, 7| an
odd piece-wise linear function f, as follows:

fut) = (t—259), ifte[256,(25+1)d]
A —ﬁ—@j+m] if t € [(25 +1)6, (27 + 2)d]

where j is from zero to 52 and f,(t) = 0 if t € [nd, 7). Put f,,(—t) = —f,(t) for
t > 0. By the constructlon we have

20 1
20 1
= —dr =26(1+1n—).
I £allo /D dr + 5 —dr=25(1+1n )

5 . o r sin(nJr%)t . .
Let r € [0, 3]. Notice that ( fo(t +5) — fult — 5) ) =1 " >0 on [jo, (5 + 1)d]

and [fp(t+5) — fu(t = 5)] =ron [jé +5,(j +1)6 — f] therefore

Sufar) = (Sufa)(5) = (Sufu)(5)

> o S [T i - e ) Dy

) 1
5 sin 51

1 [ sin(n + )¢ 1 (39 gin(n + L)
/ T(ﬁﬁ_/ 2% sin(n +3)t

T 1 ini 2 ini dt
—(n+1)s sin 51 m sin 51
1 & UHne-3 r rosin(n+ 3t 1
> ( t o) — t—7>———i—ﬁ——h
1= 1 1 r
> — r(0—r)———— — —0r > M—1Inn,
2 gp 2 TO g Rz My
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where M > 0 is some constant not depending on n. Hence

1 Mé1 2
|\Snfn||0>M/ lnndr—l—M/ 2“ 2 = nn(l—l—lnf).
2m o
Therefore ||S,| > ”S”’}f’h”‘) Inn — oo. The theorem is proved.
Cesaro’s n-th average is defined as :
1 — s
(onf)(z Ez (Suf)(x) = — [ flt+z)F,(t)dt

j=0 -

where F,(t) = L

™

N
(Sl.n 2 ) is the Fejer kernel. Notice that 5- [T F,(t)dt =

s b

Theorem 3 (Fejer) (see [3], Section 7/3) Let f be a continuous, periodic
function on R with the period 2m. Then (o, f)52 converges uniformly to f.

Theorem 4 Let f € D[0,2n] and f(0) = f(27). Then (o, f)2, converges to f
in the norm of DI0, 27].

Proof. By the previous theorem it is sufficient to show that (o, f)72; converges
to f in the norm ||.||p. Denote &, (x) = (o, f)(x)— f(x), then for all z,y : |[z—y| < r
we have

@) ~&al)] = |5 [ (F+0+ 1) - 1) = fly+ ) Falt)et]

- T dt
< 270) [ R0
- T
= 2f(r),
therefore &,(r) < 2f(r). Since ||u]lee — 0, the sequence of functions ?"y)
converges to zero almost everywhere on [0, 1]. By Lebesgue’s theorem f ! gn(r) — 0,

ie. [|€allo — 0.

4. The space D(K) and isomorphic properties of D|0, 1].

At first, we show that the space D(K) is dual if K is compact, i.e. there exists
a Banach space Y such that Y* = D(K). To do this, we need the following
well-known theorem.

Theorem 5 Let X be a Banach space and 7 be a locally convex topology on X,
which is weaker than the norm topology. If the closed unit ball Bx of X is 7-
compact then X is a dual space.
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This theorem can be deduced from the bipolar theorem. In fact, if we denote
Y = {f € X* : f is continuous in the topology 7} considered as a subspace of
X*, then X can be identified with the space Y* and o(X,Y’) coincides with 7 on
Byx.

Theorem 6 If K is compact then D(K) is a dual space.

Proof. On D(K) consider the topology 7 generated by the norm ||.|loc. We will
show that the closed unit ball Bp gy of D(K) is T-compact. Let (fn)52 C Bp(k)
be such a sequence that converges to some function f € C(K) in the norm ||.||so.
Then (f,)%, converges point-wise to f. By Fatou’s lemma, f € Bp(k) and
therefore Bp g is 7-closed.

Suppose that Bp g is not pre-compact in the topology 7. Then by Arzela’s
theorem

Je>0:V0>0,3{t, 7} C K, p(t,7) < 4,3f € Bpy, | f(t) — f(T)] > &
Hence f(r) > e forall r > § and || f|lo > f; £dr = eln §. Since § is arbitrary, there
exists a function f € Bpg) such that [|f|lo > 1, which is impossible. It follows
that Bp(x is T-compact and by the previous theorem D(K) is a dual space.

By the remark made before the previous theorem, D(K) is the dual space to
the space M (K) of all regular Borel measures in K equiped with the norm from
D(K)*.

Theorem 7 For a bounded sequence (f,)22, in D(K) the following three
conditions are equivalent:

1. (fn)32 converges uniformly.

2. (fn)o2, converges point-wise.

3. (fn)22, converges in the topology o(D(K), M (K)).

Proof. The reason for this is that Bp g is a uniform compact, so every weaker
Hausdorff topology on Bp(g) coincides with the uniform one.

From this place to the end of this section we will denote
T ={tn 1ty €[0,1],to0 = 0,1 = 1, £y > tpy1, lim £, = O}
n—oo
Obviously, the space D(T') can be identified with a subspace of D]0, 1].

Theorem 8 If there exist ¢ > d > 1 such that d < tiﬁ < ¢ for all n € N then
on the subspace Do(T') = {f € D(T) : f(0) =0} the norm ||.|| is equivalent to the

norm ||.||1 :

£l = sup{|f(t;)| : j > n}
n=1
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Proof. For an arbitrary integer j < n we have
ln—j = tny1—j 2 (d - 1)tn+1—j = dj(d - 1)tn+1‘

Since d > 1, there exists jo = Jo(d) such that t,_; — tp11-j >ty for all j > jo.
Hence f(tn+1) < 2sup{|f(ti)| : 4 > n+1— jo}. By the definition

00 tn T o0
e = 3 [ 1 <3 fym
n=1

n=1"tn+1 " tnt1
Jo [e'e)
< (Z2s1>1p|f 3 f(t)) e < 230 + )lne - sup (5]
>n n—1 n—1 '2n

On the other hand,

S tn o 0o
o= [ T2 3 Ftna) gt 2 md 3 s 1500
and
iG] f(t) — f(t)]
I e
= 1(0) ~ f(e2)| > (1) - 1))
Therefore
Ind >
3o+ e Iflo = (3 > sup If(0 D+ = 1))
12 n+
> lndzlj»gg\f

Hence ||.]|o and ||.||; are equivalent. From this it is easy to see that ||.|| is equivalent
to [|.[[1 on Do(T").

oo
Denote Dy = {x = (z1, 22, ..., Tn, ..) : ||2] = Zsup |zj| < oo} and by (e,)02,
n=1 jzn
the canonical basis of Dy. Obviously, Dy is isomorphic to the space Dy(K) and it
can be considered as a subspace of D[0,1].

Theorem 9 (e,)0°; is a basis for Dy.



Banach spaces of functions with the uniform Dini property 191

Proof. Denote by S,, the operator of the n-th partial sum:

Spx = Sp(x1, T2, ooy Tn, ) = (X1, T2, ...y Tp, 0,0, ..)

and let us show that lim |z — S,z|| = 0.
n—oo

oo
Notice that <||x — SnafH) is a non-increasing sequence. Therefore, if there
n=1

|z — Szl does not converge to zero, then there
n=1
exists € > 0 such that ||z — Spz| > € for all n € N. In detail:

exists x € Dg such that

[ee]
|z — Spz|| = Z sup |z;| + nsup |z;| > €.
k= n+1]2k jzn

Since the first summand converges to zero as n — oo, there exists ng € N such
that sup,,, |z;| > o, for all n > ng. Therefore

]l = Zsup 2] > 5 Z = +00,

=1 jzn n—no

which is impossible since z € Dy.

Theorem 10 Let (u,)52, be a normalized block basic sequence in Dq, up, =

pn aje;. Then there exists a subsequence (up,)7o, which is equivalent to
Pn71+1 VA k/k=1
the canonical basis of (1.

Proof. By the definition,

Un|| = Pn— max a;| + Z Inaxa
H n” Pn 1pn—1+1§j§pn| J| | k|
—pn 1+1
Pn
Denote a,, = max a:l and _ Z max lal Then b o <
" pn71+1§j§pn‘ i Bn , k> |ax| Pn—10n =
J:pnfl‘l'l
lun|| < ppag. Since ||uy,|| = 1, we have that
1 1
DPn Pn—1

For a given € > 0 we choose (pp, )72, so that p,, = p1 and p,, < EPn 1)~

Pn . .
Denote uyp, = Zj=k(pnk71+1) aje; and put M = [uy,,]?°,. We will show that M is
isomorphic to £;.
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Define an operator G from M to £y by Gz = G Y ;2 Tpun, = (21,22, ...).
Since

[ee]
loll = Jorl+ 2 (Pt = o), + By )l

k=2
o0 o0

= ol + 2 (1= Py ] 2 | + Y2 (1 =€)
k=2 k=2

(L—=2) ) lowl = (1 — )T,

k=1

v

operator G is correctly defined ( i.e. Gz € £; ) and continuous. On the other hand,

o oo
lzll =11 wjun, | <Y Lyl = | Tl.
j=1 j=1

It is easy to see that the set GM is dense in ¢1. Therefore G is an isomorphism
between M and /7.

We will show that in Dy the norm convergence coincides with the weak
convergence. For that, we need the following theorem.

Theorem 11 (The Bessaga-Pelczynski selection principle) (see [1], Prop.
1.3.10 ) Let (e5,)52 1 be a basis for a Banach space X with dual functionals (e},)02 ;.
Suppose ()22, is a sequence in X such that

1. inf, [|z,|| > 0 and

2. limp, oo € (xn) =0 for all k € N

Then (x,)s2, contains a subsequence (%, )53, which is equivalent to some

block basic sequence of (en) 4

Theorem 12 [n the space Dy the morm convergence coincides with the weak
convergence.

Proof. Assume that there exists a sequence (z,,)52; C Dg such that z,, weakly
converges to zero but does not converge to zero in the norm. By passing to a

subsequence, we can suppose that inf,, ||z,| = € > 0. Denote S = {z,, : n € N}.
—weak

Then 0 ¢ ?”'H and 0 € S . By the previous theorem, S contains a subsequence
(@n, )72, equivalent to some block basic sequence of (e,)52. Therefore without
loss of generality, we can suppose that (x,,);2; is a block basic sequence of
(en)nz1-

Denote —

[E
equivalent to the canonical basis of £;. Therefore (ykj )]oil does not converge weakly

to zero. On the other hand, for any f € D we have

o) Fon )| < 21 F )| = 0.

. . oo
Zn,. This sequence contains a subsequence (ykj)j:1

o
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It means that (yx, );";1 weakly converges to zero, which is impossible.

The next theorem shows that although Dy in some sense is similar to £1, it is
not isomorphic to ¢;.

Theorem 13 The space Dy does not have M-cotype r for any r > 0.

Proof. Suppose that Dy has M-cotype r > 0 for some C' > 0. Consider the
n 1

sequence T, = %en. We have (Z ||1,‘J”T) T — 7t oand
j=1

n n

1

max{|| ZajxjH taj =*1} = Z 5
j=1 J=1

n
1
Therefore C' < n_% Z — —0asn — oco. Hence C = 0.
=1

5. The separability problem

Theorem 14 If K is not pre-compact then D(K) has a subspace isomorphic to
loo.

Proof. Since K is not pre-compact, there exists ¢ > 0 and a sequence (t,,)3%; C
K such that p(t,,t,) > € for all n # m. Denote B, = {t € K : p(t,t,) < e/4}.
For every a = ()02, € loo we build f,, as follows:

an(e/4 — p(t,ty)), ifte B,

0, ifth[jBn
n=1

fa(t) =

Then f, € D(K) and it is easy to see that the map o — f, is an isomorphism
between £, and the subspace Lin{f, : @ € £s} of the space D(K).

By this theorem, in particular, we obtain that if K is not pre-compact then the
space D(K) is not separable. We will prove that if K is a convex compact in a
Banach space then D(K) is separable.

Theorem 15 If K, = {a: = (21, .., xn) ER" 1y, € [0,1],k = 1,7} then D(K,)

is separable.

Proof. We will show that for a given n there exists a countable subset
Gn C D(K,) such that for every f € D(K,) there exists (fx);>,; C G, with
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the following properties :

L. fu(r) < apr + Buf(r), where ay,, 3, are constants depending only on n.
2. fr — f uniformly.

From these it will follow that fr — f in D(K,,) and therefore G,, is dense in
D(K,,). We will show that by induction. Firstly, consider the case n = 1.
N-1
Let [0,1] = U [tj, tj+1], where t; = % For a given f € DI[0,1] we build a
j=0
piece-wise linear function fy as follows :

f(tj1) — f(t))

tit1 =t

fN(t) = (t — tj) + f(tj) ifte [tj,tj_H].

Then fy — f uniformly on [0, 1] and it is easy to see that fy(r) < 5f(r). We
define fy ;. as a piece-wise linear function, taking rational values at points ¢; and
‘fN,k(tj)_fN(tj” S % Then (fN,k — fN)(T) < %N Hence m<7‘) < 2lN+5f(7’)
Therefore the sequence (fy n)37—; satisfies conditions 1 and 2. We can take G as
the set of all piece-wise linear functions with nodes at &, N € N, j =1,2,....N
and taking at points % rational values.

Suppose that the set G,, exists in the space D(K,,). We will show the existence
of Gyy1 in D(K,41). For convenience, denote x = (y,t) € R**1 where y € R™.

Let f € D(Kp41). Define the function fy as follows: on every interval [t;, ;1]
if t =at; + (1 —atjyr) then fy(y,t) = a f(y,t;) + (1 —a)f(y,tj+1). It is not
difficult to see that fx(r) < 6f(r) and fy — f uniformly.

By the assumption, for every t; there exists an approximation g;(y) of the
function f(y,t;) such that g;x(y) — f(y,t;) uniformly and gjx(r) < anr +

ﬁnf('atj)(r> < apr+ ﬁnf(r) Build fNJc(yat) :

Ine(y,aty + (1 —a)tjv1) = agjr(y) + (1 — a)gjr1x(y)-

For all pair of points (y,t), (2,7) € K : ||(y,t) — (2,7)|| < r we have

lfNe(,t) = fve(z T < v, t) — fve(z )] + [fve(z,t) — fye(z, 7))
But
lfve(z,t) = fve(z 7)) <0 [fve(z,t) — fn(z, 7))+ [fve(z,7) — fa(z,t)]

+ |fN(Zat)_fN(sz)| o
< 2Nt~ 7l e lgza(z) — (2 t3)| + T (o)

< 2Nt =7l max |gix(z) = £(=, 1) +67(r)

AN
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and the first summand

ey, t) = fve(zt)] < algie(y.t) — gik(z.t)] + (1 — @)|gjr1x (Y, tjs1)
= gj+1k(2 tj11)]

anT + ﬁnf(r)

IN

Hence fii(r) < 2rN maxi<j<n gjx(2) — f(2,8;)| + anr + (Bn + 6) f(1).

For a given N > 0, maxi<j<n |9;(2) — f(2,t;)| — 0 because g; x(2) — f(2,1;)
uniformly. Therefore there exists ky such that maxi<j<n |g;%(2) — f(z, ;)] < +-
As a result, fynpy(r) < (an + 2)r + (B + 6)f(r). We can take G,y as the
set of all functions g(y,t) piece-wise linear in the second variable with nodes in
{% : N € N,j=1,2...N} and belonging to G, in the first variable at the nodes.

Obviously, we can take o, = 2n and 3, = 6n. From this theorem we obtain
that DJ0, 1] is a separable dual space and thus does not contain a copy of cg.

Corollary 1 If K C R" is a convex compact then D(K) is separable.

Proof. Without loss of generality we can suppose that R" is the normed space
with the Euclidian norm. Let € R™\ K. Then there exists a unique point z € K
such that p(z,z) = p(x, K). Consider the map ¢ : R" — K :

_Jz, freK
wle) = {i, ife g K
It is easy to see that ||o(x) — ¢(y)| < ||z — y|| for all z,y. Therefore if f € D(K)
then f o ¢ is an extension of f on R™ with preservation of norm. Since K is
compact, there exists A > 0 such that K C AK,,. Thus every function f € D(K)
can be extended to a function F' € D(AK,,). The space D(AK,,) is separable and
so is D(K).

Theorem 16 If X is a Banach space and K C X is a convexr compact then the
space D(K) is separable.

Proof. Consider the subspace Y = Lin{z : * € K}. It is separable because
of compactness of K. By the Banach-Mazur theorem(see [1|, Theorem 1.4.3), Y
isometrically embeds into C|0, 1]. But C[0, 1] has a basis, therefore we can suppose
that K is a compact in a Banach space X with a basis.

Denote by S, the operator of the n-th partial sum in X with respect to a
given basis. Then S,, — I point-wise, hence 5,, converges to I uniformly on K.

For a given n introduce a subspace E,, C D(K) by E,, = {g: g(x) = g(Snx)}.
Evidently, E, is isomorphic to the corresponding D(S,K), so by corollary 1 it is
separable. Let us show that (77 | E), is dense in D(K).
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Let f € D(K) and denote f,(z) = f(Snpx). Then f,, € E,, and

|[fol@) = f(@)] = [/ (Snz) = f(2)| < f(llz = Saz]) — 0.

(fn=H)(r)

r

Therefore f, — f uniformly on K and the sequence of functions
converges to zero almost everywhere. Denote o = sup,, ||Sy||. Then

@) = @] = Ual) = £@))| < @) = W)+ 1fal@) = fu )
< Flw = yl) + FlISuz — Suyl)
< Fla -yl + Flalla - y).

Hence f, — f in D(K) and the theorem is proved.
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