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For a metric space K we define by D(K) the space of all functions on K,
whose modulus of continuity is satisfied the Dini condition at 0. We prove
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1. Introduction

The famous Dini theorem says that for a continuous function f : (0, 2π) → R

satisfying the Dini condition at a point t0 ∈ (0, 2π) its Fourier series converges
to f(t0) at the point t0. Consequently if the modulus of continuity of a periodic
function fulfills the Dini condition at 0, then the corresponding Fourier series
converges to the original function at all points. In this paper we introduce and
study the natural Banach space D(K) of functions which arise from the above
remark. The space definition makes sense on a general setting of continuous
functions on arbitrary metric compact K. At first we describe the behaviour
of Fourier series for f ∈ D(T): we show that it converges uniformly, but not
necessarily in the norm of D(T). On the other hand, the theorem on Cesaro
convergence holds true in D(T) norm in its full strength. We show that D(T) is
non-reflexive and moreover contains a copy of �1. To do this we perform a study
of D(K) for a very special K = {t1, t2, ...} ⊂ [0, 1], where (tn)∞n=1 behaves like
a geometric progression. In this special case we prove that D(K) has the Schur
property, but has no cotype. Then we pass to the properties of D(K) as a Banach
space. We show that D(K) is dual if K is compact and D(K) is separable if K is
a convex compact subset of a Banach space.

2. Basic definitions and notation

Now we introduce the following notion of the Dini space.
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Definition 1 Let K be a metric space, f : K −→ R be a real function. The
modulus of continuity f̄(r) of the function f is defined by

f̄(r) = sup{|f(t) − f(τ)| : t, τ ∈ K, ρ(t, τ) ≤ r}.

Denote ‖f‖0 =
∫ 1
0

f̄(r)
r dr, ‖f‖∞ = sup{|f(t)| : t ∈ K}, ‖f‖ = max{‖f‖0, ‖f‖∞}.

We call the space
D(K) = {f : K −→ R : ‖f‖ < ∞}

with the norm ‖.‖ the Dini space.

Recall the following well-known definitions.

Definition 2 A sequence (xn)∞n=1 in a Banach space X is called a basic sequence
if it is a basis for [xn]∞n=1.

Definition 3 Let (en)∞n=1 be a basis for a Banach space X. Suppose that
(pn)∞n=1 ∈ N is a strictly increasing sequence of integers with p0 = 0 and that
(an)∞n=1 are scalars. Then a sequence of nonzero vectors (un)∞n=1 in X of the form

un =
pn∑

pn−1+1

ajej

is called a block basic sequence of (en)∞n=1.

It is well-known that every block basic sequence (un)∞n=1 is a basic sequence.

Definition 4 A Banach space X has M-cotype r with constant C > 0 if the
inequality

max
{
‖

∑
αixi‖ : αi = ±1

}
≥ C

(∑
‖xi‖r

) 1
r

holds for any finite collection of elements (xi)n
i=1.

It is well-known that M-cotype is an isomorphic invariant and the space �1 has
M-cotype r = 2(see [2]).

3. Fourier series in D(T)

Denote by D(T) the subspace of D[0, 2π] consisting of functions satisfying the
condition f(0) = f(2π).

Let f be an absolutely integrable function on [0, 2π]. Then the n-th partial
sum of its Fourier series at a point x equals

(Snf)(x) =
1
2π

∫ π

−π
f(t + x)

sin(n + 1
2)t

sin 1
2 t

dt.
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Let ϕ(t, x) = f(t + x) − f(x), then

(Snf)(x) − f(x) =
1
2π

∫ π

−π
ϕ(t, x)

sin(n + 1
2)t

sin 1
2 t

dt.

Theorem 1 (Dini’s criterion) (see [3], Section 699) Let f be a continuous
function on [0, 2π] and f(0) = f(2π). If there exists h > 0 such that for all
x ∈ [0, 2π] the intergral

∫ h
0

|ϕ(t,x)|
t dt converges uniformly relatively to x then the

Fourier series of f coverges to f uniformly.

If f ∈ D(T) then ϕ(t, x) ≤ f̄(t). But
∫ 1
0

f̄(t)
t dt < ∞, therefore the Fourier series

of f converges to it uniformly, i.e. ‖Snf − f‖∞ → 0 .

Theorem 2 There exists a function f ∈ D(T) such that the Fourier series of f
does not converge to f in the norm of D(T).

Proof. Denote by Sn the operator of the n-th partial sum of the Fourier series.
By the Banach-Steinhaus theorem, it is sufficient to show that sup{‖Sn‖0 : n ∈
N} = +∞. Fix any n ∈ N and set δ = π

n+ 1
2

. Then sin(n + 1
2)t = 0 for all t = kδ,

k ∈ [−n, n] ∩ Z.
We will discuss the case when n is an even integer. We build on [−π, π] an

odd piece-wise linear function fn as follows:

fn(t) =
{

(t − 2jδ), if t ∈ [2jδ, (2j + 1)δ]
−[t − (2j + 2)], if t ∈ [(2j + 1)δ, (2j + 2)δ]

where j is from zero to n−2
2 and fn(t) = 0 if t ∈ [nδ, π]. Put fn(−t) = −fn(t) for

t ≥ 0. By the construction, we have

‖fn‖0 =
∫ 2δ

0
dr +

∫ 1

2δ

2δ

r
dr = 2δ(1 + ln

1
2δ

).

Let r ∈ [0, δ
2 ]. Notice that

(
fn(t + r

2) − fn(t − r
2)

)
sin(n+ 1

2
)t

sin 1
2
t

≥ 0 on [jδ, (j + 1)δ]

and [fn(t + r
2) − fn(t − r

2)] = r on [jδ + r
2 , (j + 1)δ − r

2 ], therefore

Snfn(r) ≥ (Snfn)(
r

2
) − (Snfn)(

−r

2
)

≥ 1
2π

n−1∑
j=−n

∫ (j+1)δ

jδ

(
fn(t +

r

2
) − fn(t − r

2
)
)sin(n + 1

2)t
sin 1

2 t
dt −

− 1
2π

∫ −nδ

−(n+ 1
2
)δ

r
sin(n + 1

2)t
sin 1

2 t
dt − 1

2π

∫ (n+ 1
2
)δ

nδ
r
sin(n + 1

2)t
sin 1

2 t
dt

≥ 1
2π

n−1∑
j=−n

∫ (j+1)δ− r
2

jδ+ r
2

(
fn(t +

r

2
) − fn(t − r

2
)
)sin(n + 1

2)t
1
2 t

dt − 1
π

δr

≥ 1
2π

n−1∑
j=−n

r(δ − r)
1

|j + 1
2 |δ

− 1
π

δr ≥ M
r

π
lnn,
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where M > 0 is some constant not depending on n. Hence

‖Snfn‖0 ≥ M

∫ δ
2

0

1
π

lnndr + M

∫ 1

δ
2

δ
2π lnn

r
dr =

Mδ lnn

2π
(1 + ln

2
δ
).

Therefore ‖Sn‖ ≥ ‖Snfn‖0

‖fn‖ ∼ lnn → ∞. The theorem is proved.

Cesaro’s n-th average is defined as :

(σnf)(x) =
1
n

n−1∑
j=0

(Snf)(x) =
1
2π

∫ π

−π
f(t + x)Fn(t)dt

where Fn(t) = 1
πn

(
sin nt

2

sin t
2

)2
is the Fejer kernel. Notice that 1

2π

∫ π
−π Fn(t)dt = 1.

Theorem 3 (Fejer) (see [3], Section 743) Let f be a continuous, periodic
function on R with the period 2π. Then (σnf)∞n=1 converges uniformly to f .

Theorem 4 Let f ∈ D[0, 2π] and f(0) = f(2π). Then (σnf)∞n=1 converges to f
in the norm of D[0, 2π].

Proof. By the previous theorem it is sufficient to show that (σnf)∞n=1 converges
to f in the norm ‖.‖0. Denote ξn(x) = (σnf)(x)−f(x), then for all x, y : |x−y| ≤ r
we have

|ξn(x) − ξn(y)| =
∣∣∣ 1
2π

∫ π

−π

(
f(x + t) + f(y) − f(x) − f(y + t)

)
Fn(t)dt

∣∣∣
≤ 2f̄(r)

∫ π

−π
Fn(t)

dt

2π

= 2f̄(r),

therefore ξn(r) ≤ 2f̄(r). Since ‖ξn‖∞ → 0, the sequence of functions ξn(r)
r

converges to zero almost everywhere on [0, 1]. By Lebesgue’s theorem
∫ 1
0

ξn(r)
r → 0,

i.e. ‖ξn‖0 → 0.

4. The space D(K) and isomorphic properties of D[0, 1].

At first, we show that the space D(K) is dual if K is compact, i.e. there exists
a Banach space Y such that Y ∗ = D(K). To do this, we need the following
well-known theorem.

Theorem 5 Let X be a Banach space and τ be a locally convex topology on X,
which is weaker than the norm topology. If the closed unit ball BX of X is τ -
compact then X is a dual space.
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This theorem can be deduced from the bipolar theorem. In fact, if we denote
Y = {f ∈ X∗ : f is continuous in the topology τ} considered as a subspace of
X∗, then X can be identified with the space Y ∗ and σ(X, Y ) coincides with τ on
BX .

Theorem 6 If K is compact then D(K) is a dual space.

Proof. On D(K) consider the topology τ generated by the norm ‖.‖∞. We will
show that the closed unit ball BD(K) of D(K) is τ -compact. Let (fn)∞n=1 ⊂ BD(K)

be such a sequence that converges to some function f ∈ C(K) in the norm ‖.‖∞.
Then (f̄n)∞n=1 converges point-wise to f̄ . By Fatou’s lemma, f ∈ BD(K) and
therefore BD(K) is τ -closed.

Suppose that BD(K) is not pre-compact in the topology τ . Then by Arzela’s
theorem

∃ε > 0 : ∀δ > 0,∃{t, τ} ⊂ K, ρ(t, τ) < δ,∃f ∈ BD(K), |f(t) − f(τ)| ≥ ε.

Hence f̄(r) ≥ ε for all r ≥ δ and ‖f‖0 ≥ ∫ 1
δ

ε
rdr = ε ln 1

δ . Since δ is arbitrary, there
exists a function f ∈ BD(K) such that ‖f‖0 > 1, which is impossible. It follows
that BD(K) is τ -compact and by the previous theorem D(K) is a dual space.

By the remark made before the previous theorem, D(K) is the dual space to
the space M(K) of all regular Borel measures in K equiped with the norm from
D(K)∗.

Theorem 7 For a bounded sequence (fn)∞n=1 in D(K) the following three
conditions are equivalent:

1. (fn)∞n=1 converges uniformly.
2. (fn)∞n=1 converges point-wise.
3. (fn)∞n=1 converges in the topology σ(D(K),M(K)).

Proof. The reason for this is that BD(K) is a uniform compact, so every weaker
Hausdorff topology on BD(K) coincides with the uniform one.

From this place to the end of this section we will denote

T = {tn : tn ∈ [0, 1], t∞ = 0, t1 = 1, tn > tn+1, lim
n→∞ tn = 0}.

Obviously, the space D(T ) can be identified with a subspace of D[0, 1].

Theorem 8 If there exist c ≥ d > 1 such that d ≤ tn
tn+1

≤ c for all n ∈ N then
on the subspace D0(T ) = {f ∈ D(T ) : f(0) = 0} the norm ‖.‖ is equivalent to the
norm ‖.‖1 :

‖f‖1 =
∞∑

n=1

sup{|f(tj)| : j ≥ n}
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Proof. For an arbitrary integer j < n we have

tn−j − tn+1−j ≥ (d − 1)tn+1−j ≥ dj(d − 1)tn+1.

Since d > 1, there exists j0 = j0(d) such that tn−j − tn+1−j > tn+1 for all j ≥ j0.
Hence f(tn+1) ≤ 2 sup{|f(ti)| : i ≥ n + 1 − j0}. By the definition

‖f‖0 =
∞∑

n=1

∫ tn

tn+1

f(r)
r

dr ≤
∞∑

n=1

f̄(tn) ln
tn

tn+1

≤
( ∞∑

n=1

2 sup
i≥n

|f(ti)| +
j0∑

n=1

f̄(tn)
)

ln c ≤ 2(j0 + 1) ln c

∞∑
n=1

sup
i≥n

|f(ti)|.

On the other hand,

‖f‖0 =
∞∑

n=1

∫ tn

tn+1

f(r)
r

dr ≥
∞∑

n=1

f̄(tn+1) ln
tn

tn+1
≥ ln d

∞∑
n=1

sup
i≥n+1

|f(ti)|

and

‖f‖0 ≥
∫ 1

t1−t2

f(r)
r

dr ≥
∫ 1

t1−t2

|f(t1) − f(t2)|
r

dr

= |f(t1) − f(t2)| ln t1
t1 − t2

≥
(
|f(t1)| − |f(t2)|

)
ln

c

c + 1
.

Therefore

3‖f‖0 +
ln d

ln c
c−1

‖f‖0 ≥ ln d
(
3

∞∑
n=1

sup
i≥n+1

|f(ti)| + |f(t1)| − |f(t2)|
)

≥ ln d
∞∑

n=1

sup
i≥n

|f(ti)|.

Hence ‖.‖0 and ‖.‖1 are equivalent. From this it is easy to see that ‖.‖ is equivalent
to ‖.‖1 on D0(T ).

Denote D0 = {x = (x1, x2, ..., xn, ..) : ‖x‖ =
∞∑

n=1

sup
j≥n

|xj | < ∞} and by (en)∞n=1

the canonical basis of D0. Obviously, D0 is isomorphic to the space D0(K) and it
can be considered as a subspace of D[0, 1].

Theorem 9 (en)∞n=1 is a basis for D0.
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Proof. Denote by Sn the operator of the n-th partial sum:

Snx = Sn(x1, x2, ..., xn, ..) = (x1, x2, ..., xn, 0, 0, ..)

and let us show that lim
n→∞ ‖x − Snx‖ = 0.

Notice that
(
‖x − Snx‖

)∞
n=1

is a non-increasing sequence. Therefore, if there

exists x ∈ D0 such that
(
‖x − Snx‖

)∞
n=1

does not converge to zero, then there
exists ε > 0 such that ‖x − Snx‖ ≥ ε for all n ∈ N. In detail:

‖x − Snx‖ =
∞∑

k=n+1

sup
j≥k

|xj | + n sup
j≥n

|xj | ≥ ε.

Since the first summand converges to zero as n → ∞, there exists n0 ∈ N such
that supj≥n |xj | ≥ ε

2n for all n ≥ n0. Therefore

‖x‖ =
∞∑

n=1

sup
j≥n

|xj | ≥ ε

2

∞∑
n=n0

1
n

= +∞,

which is impossible since x ∈ D0.

Theorem 10 Let (un)∞n=1 be a normalized block basic sequence in D0, un =∑pn
pn−1+1 ajej . Then there exists a subsequence (unk

)∞k=1 which is equivalent to
the canonical basis of �1.

Proof. By the definition,

‖un‖ = pn−1 max
pn−1+1≤j≤pn

|aj | +
pn∑

j=pn−1+1

max
k≥j

|ak|.

Denote αn = max
pn−1+1≤j≤pn

|aj | and βn =
pn∑

j=pn−1+1

max
k≥j

|ak|. Then pn−1αn ≤

‖un‖ ≤ pnαn. Since ‖un‖ = 1 , we have that

1
pn

≤ αn ≤ 1
pn−1

.

For a given ε > 0 we choose (pnk
)∞k=1 so that pn1 = p1 and pnk

≤ εpn(k+1)−1.
Denote unk

=
∑pnk

j=(pnk−1+1) ajej and put M = [unk
]∞k=1. We will show that M is

isomorphic to �1.
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Define an operator G from M to �1 by Gx = G
∑∞

k=1 xkunk
= (x1, x2, ...).

Since

‖x‖ ≥ |x1| +
∞∑

k=2

(
(pnk−1 − pnk−1

)αnk
+ βnk

)
|xk|

= |x1| +
∞∑

k=2

(
1 − pnk−1

αnk

)
|xk| ≥ |x1| +

∞∑
k=2

(1 − ε)|xk|

≥ (1 − ε)
∞∑

k=1

|xk| = (1 − ε)‖Tx‖,

operator G is correctly defined ( i.e. Gx ∈ �1 ) and continuous. On the other hand,

‖x‖ = ‖
∞∑

j=1

xjunj‖ ≤
∞∑

j=1

|xj | = ‖Tx‖.

It is easy to see that the set GM is dense in �1. Therefore G is an isomorphism
between M and �1.

We will show that in D0 the norm convergence coincides with the weak
convergence. For that, we need the following theorem.

Theorem 11 (The Bessaga-Pe�lczyński selection principle) (see [1], Prop.
1.3.10 ) Let (en)∞n=1 be a basis for a Banach space X with dual functionals (e∗n)∞n=1.
Suppose (xn)∞n=1 is a sequence in X such that

1. infn ‖xn‖ > 0 and
2. limn→∞ e∗k(xn) = 0 for all k ∈ N

Then (xn)∞n=1 contains a subsequence (xnk
)∞k=1 which is equivalent to some

block basic sequence of (en)∞n=1

Theorem 12 In the space D0 the norm convergence coincides with the weak
convergence.

Proof. Assume that there exists a sequence (xn)∞n=1 ⊂ D0 such that xn weakly
converges to zero but does not converge to zero in the norm. By passing to a
subsequence, we can suppose that infn ‖xn‖ = ε > 0. Denote S = {xn : n ∈ N}.
Then 0 
∈ S

‖.‖ and 0 ∈ S
weak. By the previous theorem, S contains a subsequence

(xnk
)∞k=1 equivalent to some block basic sequence of (en)∞n=1. Therefore without

loss of generality, we can suppose that (xnk
)∞k=1 is a block basic sequence of

(en)∞n=1.
Denote yk = 1

‖xnk
‖xnk

. This sequence contains a subsequence (ykj
)∞j=1

equivalent to the canonical basis of �1. Therefore (ykj
)∞j=1 does not converge weakly

to zero. On the other hand, for any f ∈ D∗
0 we have

|f(ykj
)| = | 1

‖xnkj
‖f(xnkj

)| ≤ 1
ε
|f(xnkj

)| → 0.
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It means that (ykj
)∞j=1 weakly converges to zero, which is impossible.

The next theorem shows that although D0 in some sense is similar to �1, it is
not isomorphic to �1.

Theorem 13 The space D0 does not have M-cotype r for any r > 0.

Proof. Suppose that D0 has M-cotype r > 0 for some C > 0. Consider the

sequence xn = 1
nen. We have

( n∑
j=1

‖xj‖r
) 1

r = n
1
r and

max{‖
n∑

j=1

αjxj‖ : αj = ±1} =
n∑

j=1

1
j
.

Therefore C ≤ n− 1
r

n∑
j=1

1
j
→ 0 as n → ∞. Hence C = 0.

5. The separability problem

Theorem 14 If K is not pre-compact then D(K) has a subspace isomorphic to
�∞.

Proof. Since K is not pre-compact, there exists ε > 0 and a sequence (tn)∞n=1 ⊂
K such that ρ(tn, tm) > ε for all n 
= m. Denote Bn = {t ∈ K : ρ(t, tn) < ε/4}.
For every α = (αn)∞n=1 ∈ �∞ we build fα as follows:

fα(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

αn(ε/4 − ρ(t, tn)), if t ∈ Bn

0, if t 
∈
∞⋃

n=1

Bn

Then fα ∈ D(K) and it is easy to see that the map α �−→ fα is an isomorphism
between �∞ and the subspace Lin{fα : α ∈ �∞} of the space D(K).

By this theorem, in particular, we obtain that if K is not pre-compact then the
space D(K) is not separable. We will prove that if K is a convex compact in a
Banach space then D(K) is separable.

Theorem 15 If Kn =
{

x = (x1, ..., xn) ∈ R
n : xk ∈ [0, 1], k = 1, n

}
then D(Kn)

is separable.

Proof. We will show that for a given n there exists a countable subset
Gn ⊂ D(Kn) such that for every f ∈ D(Kn) there exists (fk)∞k=1 ⊂ Gn with
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the following properties :

1. f̄k(r) ≤ αnr + βnf̄(r), where αn, βn are constants depending only on n.
2. fk → f uniformly.

From these it will follow that fk → f in D(Kn) and therefore Gn is dense in
D(Kn). We will show that by induction. Firstly, consider the case n = 1.

Let [0, 1] =
N−1⋃
j=0

[tj , tj+1], where tj = j
N . For a given f ∈ D[0, 1] we build a

piece-wise linear function fN as follows :

fN (t) =
f(tj+1) − f(tj)

tj+1 − tj
(t − tj) + f(tj) if t ∈ [tj , tj+1].

Then fN → f uniformly on [0, 1] and it is easy to see that f̄N (r) ≤ 5f̄(r). We
define fN,k as a piece-wise linear function, taking rational values at points tj and
|fN,k(tj)−fN (tj)| ≤ 1

k . Then (fN,k − fN )(r) ≤ 2r
k N . Hence fN,k(r) ≤ 2r

k N+5f̄(r).
Therefore the sequence (fN,N )∞N=1 satisfies conditions 1 and 2. We can take G1 as
the set of all piece-wise linear functions with nodes at j

N , N ∈ N, j = 1, 2, ..., N

and taking at points j
N rational values.

Suppose that the set Gn exists in the space D(Kn). We will show the existence
of Gn+1 in D(Kn+1). For convenience, denote x = (y, t) ∈ R

n+1 where y ∈ R
n.

Let f ∈ D(Kn+1). Define the function fN as follows: on every interval [tj , tj+1]
if t = αtj + (1 − αtj+1) then fN (y, t) = α f(y, tj) + (1 − α)f(y, tj+1). It is not
difficult to see that fN (r) ≤ 6f(r) and fN → f uniformly.

By the assumption, for every tj there exists an approximation gj,k(y) of the
function f(y, tj) such that gj,k(y) → f(y, tj) uniformly and gj,k(r) ≤ αnr +
βnf(., tj)(r) ≤ αnr + βnf(r). Build fN,k(y, t) :

fN,k(y, αtj + (1 − α)tj+1) = αgj,k(y) + (1 − α)gj+1,k(y).

For all pair of points (y, t), (z, τ) ∈ K : ‖(y, t) − (z, τ)‖ ≤ r we have

|fN,k(y, t) − fN,k(z, τ)| ≤ |fN,k(y, t) − fN,k(z, t)| + |fN,k(z, t) − fN,k(z, τ)|.

But

|fN,k(z, t) − fN,k(z, τ)| ≤ |fN,k(z, t) − fN (z, τ)| + |fN,k(z, τ) − fN (z, t)|
+ |fN (z, t) − fN (z, τ)|
≤ 2N |t − τ | max

1≤j≤N
|gj,k(z) − f(z, tj)| + fN (r)

≤ 2N |t − τ | max
1≤j≤N

|gj,k(z) − f(z, tj)| + 6f(r)
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and the first summand

|fN,k(y, t) − fN,k(z, t)| ≤ α|gj,k(y, tj) − gj,k(z, tj)| + (1 − α)|gj+1,k(y, tj+1)
− gj+1,k(z, tj+1)|
≤ αnr + βnf(r).

Hence fN,k(r) < 2rN max1≤j≤N |gj,k(z) − f(z, tj)| + αnr + (βn + 6)f(r).

For a given N > 0, max1≤j≤N |gj,k(z)−f(z, tj)| → 0 because gj,k(z) → f(z, tj)
uniformly. Therefore there exists kN such that max1≤j≤N |gj,k(z)− f(z, tj)| ≤ 1

N .
As a result, fN,kN

(r) ≤ (αn + 2)r + (βn + 6)f(r). We can take Gn+1 as the
set of all functions g(y, t) piece-wise linear in the second variable with nodes in
{ j

N : N ∈ N, j = 1, 2...N} and belonging to Gn in the first variable at the nodes.

Obviously, we can take αn = 2n and βn = 6n. From this theorem we obtain
that D[0, 1] is a separable dual space and thus does not contain a copy of c0.

Corollary 1 If K ⊂ R
n is a convex compact then D(K) is separable.

Proof. Without loss of generality we can suppose that R
n is the normed space

with the Euclidian norm. Let x ∈ R
n \K. Then there exists a unique point x̄ ∈ K

such that ρ(x, x̄) = ρ(x,K). Consider the map ϕ : R
n → K :

ϕ(x) =
{

x, if x ∈ K

x̄, if x 
∈ K

It is easy to see that ‖ϕ(x)− ϕ(y)‖ ≤ ‖x− y‖ for all x, y. Therefore if f ∈ D(K)
then f ◦ ϕ is an extension of f on R

n with preservation of norm. Since K is
compact, there exists λ > 0 such that K ⊂ λKn. Thus every function f ∈ D(K)
can be extended to a function F ∈ D(λKn). The space D(λKn) is separable and
so is D(K).

Theorem 16 If X is a Banach space and K ⊂ X is a convex compact then the
space D(K) is separable.

Proof. Consider the subspace Y = Lin{x : x ∈ K}. It is separable because
of compactness of K. By the Banach-Mazur theorem(see [1], Theorem 1.4.3), Y
isometrically embeds into C[0, 1]. But C[0, 1] has a basis, therefore we can suppose
that K is a compact in a Banach space X with a basis.

Denote by Sn the operator of the n-th partial sum in X with respect to a
given basis. Then Sn → I point-wise, hence Sn converges to I uniformly on K.

For a given n introduce a subspace En ⊂ D(K) by En = {g : g(x) = g(Snx)}.
Evidently, En is isomorphic to the corresponding D(SnK), so by corollary 1 it is
separable. Let us show that

⋃∞
n=1 En is dense in D(K).
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Let f ∈ D(K) and denote fn(x) = f(Snx). Then fn ∈ En and

|fn(x) − f(x)| = |f(Snx) − f(x)| ≤ f̄(‖x − Snx‖) → 0.

Therefore fn → f uniformly on K and the sequence of functions (fn−f)(r)
r

converges to zero almost everywhere. Denote α = supn ‖Sn‖. Then
∣∣∣[fn(x) − f(x)] − [fn(y) − f(y)]

∣∣∣ ≤ |f(x) − f(y)| + |fn(x) − fn(y)|
≤ f(‖x − y‖) + f(‖Snx − Sny‖)
≤ f(‖x − y‖) + f(α‖x − y‖).

Hence fn → f in D(K) and the theorem is proved.
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