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The problem of di�raction of a vertical electric dipole �eld on a spiral conducti-
ve sphere and a cone has been solved. By the method of regularization of the
matrix operator of the problem, an in�nite system of linear algebraic equati-
ons of the second kind with a compact matrix operator in Hilbert space `2 is
obtained. Some limiting variants of the problem statement are considered.
Keywords: spiral conductive sphere; cone; vertical electric dipole; regularization
method; system of equations of the second kind.

Ðåçóíåíêî Â.Î.Äèôðàêöiÿ ïîëÿ âåðòèêàëüíîãî åëåêòðè÷íîãî äèïî-
ëÿ íà ñïiðàëüíî ïðîâiäíié ñôåði â ïðèñóòíîñòi êîíóñà. Ðîçâ'ÿçàíà
çàäà÷à äèôðàêöi¨ ïîëÿ âåðòèêàëüíîãî åëåêòðè÷íîãî äèïîëÿ íà ñïiðàëüíî
ïðîâiäíié ñôåði ó ïðèñóòíîñòi êîíóñà. Ìåòîäîì ðåãóëÿðèçàöi¨ ìàòðè÷íîãî
îïåðàòîðà çàäà÷i îòðèìàíî íåñêií÷åííó ñèñòåìó ëiíiéíèõ àëãåáðà¨÷íèõ ðiâ-
íÿíü äðóãîãî ðîäó ç êîìïàêòíèì ìàòðè÷íèì îïåðàòîðîì ó ãiëüáåðòîâîìó
ïðîñòîði `2. Ðîçãëÿíóòî äåÿêi ãðàíè÷íi âàðiàíòè ïîñòàíîâêè çàäà÷i.
Êëþ÷îâi ñëîâà: ñïiðàëüíî ïðîâiäíà ñôåðà; êîíóñ; âåðòèêàëüíèé åëåêòðè-
÷íèé äèïîëü; ìåòîä ðåãóëÿðèçàöi¨; ñèñòåìà ðiâíÿíü äðóãîãî ðîäó.

Ðåçóíåíêî Â. À. Äèôðàêöèÿ ïîëÿ âåðòèêàëüíîãî ýëåêòðè÷åñêîãî

äèïîëÿ íà ñïèðàëüíî ïðîâîäÿùåé ñôåðå â ïðèñóòñòâèè êîíóñà.

Ðåøåíà çàäà÷à äèôðàêöèè ïîëÿ âåðòèêàëüíîãî ýëåêòðè÷åñêîãî äèïîëÿ íà
ñïèðàëüíî ïðîâîäÿùåé ñôåðå â ïðèñóòñòâèè êîíóñà. Ìåòîäîì ðåãóëÿðèçà-
öèè ìàòðè÷íîãî îïåðàòîðà çàäà÷è ïîëó÷åíà áåñêîíå÷íàÿ ñèñòåìà ëèíåéíûõ
àëãåáðàè÷åñêèõ óðàâíåíèé âòîðîãî ðîäà ñ êîìïàêòíûì ìàòðè÷íûì îïåðà-
òîðîì â ãèëüáåðòîâîì ïðîñòðàíñòâå `2. Ðàññìîòðåíû íåêîòîðûå ïðåäåëü-
íûå âàðèàíòû ïîñòàíîâêè çàäà÷è.
Êëþ÷åâûå ñëîâà: ñïèðàëüíî ïðîâîäÿùàÿ ñôåðà; êîíóñ; âåðòèêàëüíûé ýëå-
êòðè÷åñêèé äèïîëü; ìåòîä ðåãóëÿðèçàöèè; ñèñòåìà óðàâíåíèé 2-ãî ðîäà.

2010 Mathematics Subject Classi�cation: 78A40; 78A45; 35A22; 97N42.

1. Introduction

There is an interest to the problems of di�raction, electrodynamics, antenna
techniques, optics, electrostatics, acoustics and other tasks on the sphere and
on the cone. Di�erent cases are considered: one sphere and one cone; two-three
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spheres and two-three cones; chains of hundreds of spheres and several cones
nested into each other [1, 2, 3]. Increased attention to tasks on such surfaces
and other resonance structures [4] has at least two reasons: 1) increased practical
requirements for reducing the size of devices using parts of spheres and cones;
2) the emergence of new materials with new physical properties, for example,
spiral conductive surfaces, nanomaterials, impedance structures. Such requests of
practice lead to the need to reformulate standard problem statements, to create
mathematical models of the studied processes, to create new numerical-analytical
methods for solving new theoretical and applied problems. Among the numerical-
analytical methods for solving a wide range of problems, an important role is
played by the regularization method of the matrix or integral operator of the
problem [5, 6]. In this paper, based on a variant of the regularization method of the
matrix operator of the problem [2]-[6], [11, 12], [14]-[18], we construct a numerical-
analytical algorithm for solving the problem of di�raction of a vertical electric
dipole �eld on a spiral conductive sphere in the presence of an ideally conductive
cone. An e�ciently solvable in�nite system of linear algebraic equations of the
second kind with a compact operator is obtained [3]. Some limiting variants of
the problem statement are considered.

2. Formulation of the problem

We place the origin of the Cartesian (x, y, z) and spherical (r, θ, ϕ) coordinate
systems in the centre of a spiral conductive hollow sphere of radius a [3]. The top
of an ideally conductive cone is in the center of the sphere, and the axis of the cone
coincides with the negative semi-axis of the axis 0z. The opening angle of the cone
is counted from the positive semi-axis of the axis 0z and is assumed to be equal γ,
γ ∈ (0, π). The cone is the ideally conductive. We isolate the cone and the sphere
by a non-conductive in�nitely thin and in�nitely narrow tape. We place a vertical

electric dipole at the point (0, 0, b), a < b. The moment
−→
P of the dipole is oriented

along the axis 0z and |
−→
P | = 1. The dipole �eld creates, in particular, secondary

�elds outside of the sphere and inside of the sphere, and also creates electric
currents on the surfaces of the sphere and the cone. The time dependence of the
dipole �eld and secondary �elds is assumed to be harmonic with the frequency
ω = 2π/λ, λ is the wavelength of the dipole �eld. The electric currents, arising on
the surface of the sphere under the in�uence of its spiral conductivity, change the
standard direction along the meridians. Currents can pass on the surface of the
sphere only along lines directed at an angle 0 ≤ β < π/2 to the meridians. For
an observer located at the pole of the sphere, this direction corresponds to the
movement of the currents clockwise at an angle β to meridians. The sphere, the
cone, and the currents on the sphere are axisymmetric. In this paper, we consider
two independent variants of current movement along the surface of a sphere [3].
The �rst variant corresponds to the movement of currents at an angle (+β) to
the meridians on the sphere, and the second one corresponds to the movement of
currents at an angle (−β) to the meridians on the sphere [3]. Consider brie�y the
formulation of the problem [3]. We will use the method of partial domains. Full
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�elds inside of a sphere and secondary �elds outside of a sphere should be solutions
to the Maxwell's equations, satisfy material equations, satisfy radiation conditions
at in�nity, have bounded energy in any restricted volume of space, including the
top of the cone, and have the required feature at the dipole placement point. The
boundary conditions on the surface of the sphere r = a, θ ∈ [0, γ), ϕ ∈ [0, 2π]
are as follows [3], [7]-[12]. The tangential components of the total magnetic �elds
Hϕ, Hθ and the tangential components Eϕ, Eθ of the full electric �elds are related,
in particular, by means of a multiplier like tg (±β)(

H(2)
ϕ +H(0)

ϕ −H(1)
ϕ

)
tg(±β) +

(
H

(2)
θ −H

(1)
θ

)
= 0, (1)

E
(1)
θ + E(1)

ϕ tg(±β) = 0, E
(1)
θ = E

(0)
θ + E

(2)
θ , E(2)

ϕ = E(1)
ϕ , (2)

The boundary conditions on the surface of the cone are set as follows: the vector
products of the complete electromagnetic �elds and the external normal −→n 1 to
the surface of the cone are zero

E(1) ⊗−→n 1 = 0, r ∈ [0, a), θ = γ, ϕ ∈ [0, 2π], (3)(
E(2) + E(0)

)
⊗−→n 1 = 0, r ∈ (a,∞), θ = γ, ϕ ∈ [0, 2π], (4)

where in formulas (1)-(4) the superscripts of the electromagnetic �eld vectors refer
to the source �eld, to the �eld inside the sphere, r < a, the �eld outside r > a,
the sphere, respectively. In this formulation, problem (1)-(4) has a unique solution
[13]. We note that in this work, on the basis of [3], [7]-[12] the boundary condi-
tions on a spiral conductive sphere are re�ned. The continuity of the tangential
components of the total electric �eld on a spiral conducting sphere is required.
We also clarify the di�erence in representations and transformations of the Debye
potentials for TM and TE waves and the di�erences in the corresponding Fourier
series. We note that the introduction of additional boundary conditions naturally
leads to the complication of the method for solving the problem and to obtaining
new systems of algebraic equations of the second kind.

3. Fourier series for Debye scalar potentials

Since the time of Debye (near 1903), scalar and vector potentials have been
used successfully to reduce the dimensionality of problems, in particular, problems
of di�raction of electromagnetic waves, acoustics, and electrostatics. To solve these
and other problems on the coordinate surfaces used, in particular, the method of
separation of variables in 11 coordinate systems. The type of representation of
potentials depends not only on the shape of the surface and the type of boundary
conditions on the surface. The main ones are, in particular, the methods of direct
and inverse integral transformations of di�erential equations for potentials, as
well as the method of Green functions. Both methods are in most cases used in
conjunction with the Fourier method of separation of variables. Thus, in [8]-[10],
the method of integral transformations and the method of separation of Fourier
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variables were among the �rst used to solve the problem of di�raction of a vertical
electric dipole �eld on an ideally conductive cone. On the basis of [3], [7]-[10], we
write in the spherical coordinate system the Fourier series for the Debye electric
potential of the dipole �eld in the presence of an ideally conductive cone

U (0) =

∞∑
m=1

F (1)
m MmPνm(cos θ)

{
[ψνm(kr) ξνm(kb)] /(kr), r < b,
[ξνm(kr)ψνm(kb)] /(kr), r > b,

(5)

where

Mm =

[
(kb)3 sin γ

∂

∂ν
Pν(cos γ)

∣∣
ν=νm

P 1
νm(cos γ)

]−1

, F (1)
m = 2νm + 1, (6)

ψνm(kr), ξνm(kb) are spherical Bessel functions of the �rst kind and, accordingly,
Hankel of the third kind in the Debye notation, Pνm(cos θ) � Legendre functions of
the �rst kind of the νm degree of the zero order of the argument cos θ, P 1

νm(cos γ)�
associated Legendre functions of the �rst kind of the νm degree of the �rst order
of the argument cos γ. The spectral parameters νm and new parameters µn satisfy
the transcendental equations Pνm(cos γ) = 0 and P 1

µn(cos γ) = 0. The roots of
these equations νm (and µn) are simple and do not coincide for m,n ≥ 1. The
magnetic potential V (0) of the dipole is zero by the de�nition.

We look for the secondary potentials in the form of Fourier series (5), (6)

U (1) =
∞∑
m=1

F (1)
m AmPνm(cos θ)ψνm(kr)/(kr), r < a, (7)

V (1) =

∞∑
n=1

F (2)
n BnPµn(cos θ)ψµn(kr)/(kr), r < a, (8)

U (2) =
∞∑
m=1

F (1)
m CmPνm(cos θ) ξνm(kr)/(kr), r > a, (9)

V (2) =
∞∑
n=1

F (2)
n DnPµn(cos θ) ξµn(kr)/(kr), r > a, (10)

where

F (2)
n = 2µn + 1, n ≥ 1. (11)

4. The system of four functional equations containing fractional
degree Legendre functions

To �nd the coe�cients Am, Bn, Cm, Dn,m, n ≥ 1 of the Debye potentials (7) -
(11), we construct a system of four functional equations. Note that the sequences
of coe�cients {Am}, {Bn}, {Cm}, {Dn},m, n ≥ 1 belong to Hilbert spaces with
di�erent weights. We �rst use the boundary conditions (1)-(4), perform linear
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transformations to obtain a system of four functional equations which connect all
desired coe�cients. For example, the �rst two equations are as follows

∞∑
n=1

F (2)
n

[
Dnξ

1
µn(ka)−Bnψ1

µn(ka)
]
P 1
µn(cos θ) + (ika)(tg(±β))

×
∞∑
m=1

F (1)
m [Cmξνm(ka)−Mmψνm(ka)ξνm(kb)−Amψνm(ka)]P 1

νm(cos θ) = 0,

(12)
where θ ∈ [0, γ],

∞∑
n=1

BnF
(2)
n ψµn(ka)/ ξ1

µn(ka)Pµn(cos θ)

+ (ika)(tg (±β))

∞∑
m=1

F (1)
m

[
Amξ

1
νm(ka)−Mmξ

1
νm(kb)

]
P 1
νm(cos θ) = 0, (13)

where θ ∈ [0, γ]. For functions ξ1
µn(ka), ψ1

µn(ka), ξ1
νm(ka), ξ1

νm(kb) the superscript
1 denotes the di�erentiation by argument ka or kb, respectively.

5. The system of linear algebraic equations of the second kind

The resulting system of four functional equations is a system of the �rst kind
with respect to the coe�cients being sought Am, Bn, Cm, Dn,m, n ≥ 1 and it
is ine�ective for directly solving the problem. Note that in solving problems of
electrodynamics, electrostatics, acoustics and other problems on a sphere with
aperture, the use of an integral representation of the Abel type for the Legendre
functions [11]-[12], [14]-[18] is recommended. In our case, for example, for equation
(13), the Abel representation is ine�ective. The resulting functional equations
require, in particular, additional decomposition over new orthogonal classes of
functions.

Indeed, we use the generalized integral representations of Abel type

Pνm(cos θ) = π−1
√

2

∫ θ

0
(cosφ− cos θ)−0.5 cos

(
νm +

1

2

)
φdφ,

in (13) for the Legendre functions. Then we change the order of summation
and integration in the functional equation using the uniform convergence of
the series. We get an integral equation of Abel type with the kernel (cosφ −
cos θ)−0.5. Solving an integral equation using the inverse Abel transformation,
we received a new functional equation in the form of series containing functions
cos
(
νm + 1

2

)
φ, cos

(
µn + 1

2

)
φ,m, n ≥ 1. These functions are not orthogonal in

the space L2(0, γ). The Fourier series of these functions must be redeveloped in
the corresponding functional space. Let us transform system (12), (13) and the
remaining two functional equations into a system of algebraic equations of the
second kind as follows. First, we apply the discrete Fourier transform to each
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functional equation, taking into account, in particular, the orthogonality of the
associated Legendre functions P 1

µn(cos θ) with weight sin θ [8]�[10]

N (2)
n,n =

∫ γ

0

(
P 1
µn(cos θ)

)2
sin θ dθ = −µn(µn + 1)

2µn + 1
sin γP 1

µn(cos γ)
∂

∂µ
P 1
µ(cos γ)

∣∣
µ=µn

,

(14)
N (2)
m,n = 0, m 6= n, m, n ≥ 1. (15)

The resulting auxiliary system of four linear equations includes, for example,
the equation

N (2)
n,nF

(2)
n

[
Dnξ

1
µn(ka)−Bnψ1

µn(ka)
]

= −(ika) tg(±β)

×
∞∑
m=1

F (1)
m [Cmξνm(ka)−Mmψνm(ka)ξνm(kb)−Amψνm(ka)] Jn,m, (16)

where

Jn,m =
µn(µn + 1)

(µn − νm)(νm + µn + 1)
sin γ Pµn(cos γ)P 1

νm(cos γ). (17)

Let us return to the system of four functional equations, including (12), (13)
and (14)�(17). Based on it, to �nd coe�cients Bn, n ≥ 1, for potential (8),
we construct a system of linear equations of the second kind. For this, we �-
rst exclude the coe�cients An, Cm, Dn,m, n ≥ 1, from the auxiliary system. In
this case, we solve the auxiliary system, use the equality for Wronski determinants
W (ψνm(ka), ξνm(ka)) = W (ψµn(ka), ξµn(ka)),m, n ≥ 1 and perform some linear
transformations. So, in the auxiliary double sum, using uniform convergence of
the series, we change the order of summation and get

∞∑
m=1

TmJn,m

∞∑
k=1

BkRkJk,m =
∞∑
k=1

BkRk

∞∑
m=1

Jk,mTmJn,m

With these operations, we separate and inverse the main part of the matrix
operator of the problem. As a result, we obtained an in�nite system of linear
algebraic equations of the second kind (ISLAE-II)

Bn = − [(ka) tg(±β)]2
∞∑
s=1

Bsεs,n − [(ika) tg(±β)]
∞∑
m=1

F (3)
m Jn,m, (18)

where
εs,n =

[
F (2)
s /F (1)

n

]
ψ1
µs(ka)ξµn(ka)

[
1/N (2)

n,n

]
×
∞∑
m=1

[
N (1)
m,mψ

1
νm(ka)ξ1

νm(ka)
]−1

Js,m Jm,n,

F (3)
m =

F
(1)
m

F
(2)
m

Mm
ξµn(kb)ξµn(ka)

ξ1
νm(ka)

1

N
(2)
n,n

, m, n ≥ 1.
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N (1)
m,m =

νm(νm + 1)

2νm + 1
sin γP 1

νm(cos γ)
∂

∂ν
P 1
ν (cos γ)

∣∣
ν=νm

.

In the matrix elements εs,n and in the second series of the system (18), the
convergence is uniform on the set ka ∈ (0,∞), ka < kb, β ∈ [0, π/2) and γ ∈ (0, π).
As a result, ISLAE-II with a compact operator M (1) in space `2 and a right-hand
B(1) column in `2 are obtained [19]

B = M (1)B +B(1), (19)

where B = (B1, B2, B3, ..., Bn, ...)
T is the vector of magnetic potential coe�ci-

ents sought (8), where the superscript T denotes the transposition of the row
into a column, M (1) =

{
−(ka)2(tg2(±β))× εs,n

}∞
s,n=1

is the system matrix,

B = (B1, B2, B3, ..., Bn, ...)
T =

({
−(ika)(tg(±β))×

∑∞
m=1 F

(3)
m Jn,m

}∞
n=1

)T
�

right column of the system.

6. Conclusions

1. System (19) is e�ectively solvable analytically and numerically in Hilbert
space `2. At small angles γ, (0 < γ << 1), (and large angles γ, (0 << γ < π), the
system is analytically solvable for any values 0 < ka < kb.

2. To �nd the coe�cients Am,m ≥ 1 and potential U (1) (7), it is necessary
to build a new ISLAE-II. At the same time, to obtain an ISLAE-II, we use the
same regularization method for the matrix operator of the di�raction problem, as
in deducing the system (19). In this case to �nd the coe�cients Cm, Dn,m, n ≥ 1
and potentials (9) and (10), we use linear transformation of variables.

3. Let us discuss the limiting case of the problem statement, when the sphere
loses its spiral conductivity and becomes ideally conducting (β → 0). In this case
[2, 3], the problem of di�raction of a dipole �eld on such a sphere in the presence
of a cone, the desired coe�cients of the Fourier series of Debye potentials (8)-(10)
can be found explicitly. So, when β = 0 we �nd the solution to the system (18)
and we get the explicit value of the coe�cients Bn : Bn = 0, n ≥ 1. Also we obtain
the explicit values of the limiting components of the di�racted �eld.

4. In another limiting case, when the sphere is absent (ka = 0), the components
of the desired �elds of di�raction of a dipole �eld on a cone are known and are
calculated explicitly from a given dipole potential U (0) (5), (6).

5. The parametric equations x = sin(±η) × cos(±14η), y = sin(±η) ×
sin(±14η), z = 1 + cos(±η), η ∈ [0, π/2) are re�ned for two variants of the
movement of currents along the surface of a spiral conductive sphere correspondi-
ng to �xed angles ±β0 to the meridians on the sphere.

6. The approach developed in this paper is applicable, for example, to the
problem of di�raction of a dipole �eld on a spiral conductive sphere, which has a
circular hole between a sphere and a cone, as well as for other applied problems.
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Ðåçóíåíêî Â.Î. Äèôðàêöiÿ ïîëÿ âåðòèêàëüíîãî åëåêòðè÷íîãî äèïîëÿ íà

ñïiðàëüíî ïðîâiäíié ñôåði â ïðèñóòíîñòi êîíóñà. Ðîçâ'ÿçàíà çàäà÷à äèôðà-
êöi¨ åëåêòðîìàãíiòíîãî ïîëÿ âåðòèêàëüíîãî åëåêòðè÷íîãî äèïîëÿ íà ñïiðàëüíî ïðî-
âiäíié ñôåði ó ïðèñóòíîñòi iäåàëüíî ïðîâiäíîãî êðóãîâîãî êîíóñà. Öåíòð ñôåðè i
âåðøèíà êîíóñà ðîçìiùåíî ó ïî÷àòêó äåêàðòîâî¨ òà ñôåðè÷íî¨ ñèñòåì êîîðäèíàò.
Äèïîëü ðîçìiùåíèé íà âiñi ñèìåòði¨ ñôåðè i êîíóñà òà ïîçà ñôåðè i êîíóñà. Ìî-
ìåíò äèïîëÿ îði¹íòîâíèé âçäîâæ âiñi ñèìåòði¨ ñôåðè òà êîíóñà. Åëåêòðè÷íi òîêè
íà ïîâåðõíi ñôåðè, â íàñëiäîê ñïiðàëüíî¨ ïðîâiäíîñòi ñôåðè, ìîæóòü òåêòè ïiä ôi-
êñîâàíèì êóòîì äî êîæíîãî ìåðèäiàíó. Ïîâíi åëåêòðîìàãíiòíi ïîëÿ ïîâèííi çàäî-
âîëüíÿòè, çîêðåìà, ðiâíÿííÿ Ìàêñâåëà, ìàòåðiàëüíi ðiâíÿííÿ, óìîâè ñêií÷åííîñòi
åíåðãi¨ ó äîâiëüíîìó îáìåæåíîìó îá'¹ìó, ãðàíè÷íi óìîâè. Äëÿ ðîçâ'ÿçêó çàäà÷i áó-
äåìî âèêîðèñòîâóâàòè ìåòîä ÷àñòêîâèõ îáëàñòåé. Â ñôåðè÷íié ñèñòåìi êîîðäèíàò
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âèêîðèñòàíi ÷îòèðè ñêàëÿðíi åëåêòðè÷íi i ìàãíiòíi ïîòåíöiàëè Äåáàÿ. Ïîòåíöiàëè
Äåáàÿ ïðåäñòàâëåíi ðÿäàìè Ôóð'å ïî ôóíêöiÿì Áåññåëÿ, ôóíêöiÿì Õàíêåëÿ, à òà-
êîæ ïî ôóíêöiÿì Ëåæàíäðà äðîáîâèõ ñïåêòðàëüíèõ ïàðàìåòðiâ. Ãðàíè÷íi óìîâè íà
ïîâåðõíi ñïiðàëüíî ïðîâiäíî¨ ñôåðè íåïåðåðâíî ïîâ'ÿçóþòü òàíãåíöiàëüíi êîìïîíåí-
òè åëåêòðè÷íèõ i ìàãíiòíèõ ïîëiâ. Ïîòðiáíî äëÿ ÷îòèðüîõ ïîòåíöiàëiâ Äåáàÿ çíàéòè
êîåôiöi¹íòè ÷îòèðüîõ ðÿäiâ Ôóð'å. Ïîñëiäîâíîñòi êîåôiöi¹íòiâ öèõ ðÿäiâ øóêà¹ìî ó
Ãiëüáåðòîâèõ ïðîñòîðàõ çi ñâî¹þ âàãîþ. Äëÿ ïîøóêó êîåôiöi¹íòiâ âèêîðèñòîâó¹ìî
ãðàíè÷íi óìîâè òà îäåðæó¹ìî ÷îòèðè ôóíêöiîíàëüíi ðiâíÿííÿ. �õ ïðÿìèé ðîçâ'ÿçîê
íååôåêòèâíèé. Òàêîæ íå ¹ åôåêòèâíèì çàñòîñóâàííÿ ó ôóíêöiîíàëüíèõ ðiâíÿííÿõ
äëÿ ôóíêöié Ëåæàíäðà óçàãàëüíåíîãî iíòåãðàëüíîãî ïðåäñòàâëåííÿ òèïà Àáåëÿ. Ó
äàíié ðîáîòi äëÿ çàñòîñóâàííÿ ìåòîäà ðåãóëÿðèçàöi¨ ìàòðè÷íîãî îïåðàòîðà çàäà÷i
äî êîæíîãî ç ÷îòèðüîõ ðiâíÿíü çàñòîñîâó¹ìî äèñêðåòíå ïåðåòâîðåííÿ Ôóð'å. Äàëi
âèêîðèñòîâó¹ìî ðiâíiñòü âèçíà÷íèêiâ Âðîíñüêîãî äëÿ ôóíêöié Áåññåëÿ ç äðîáîâèìè
iíäåêñàìè. Ïiñëÿ ëiíiéíèõ ïåðåòâîðåíü òà çàñòîñóâàííÿ çìiíè ïîðÿäêiâ ïiäñóìóâàííÿ
ó äîïîìiæíèõ ïîäâiéíèõ ÷èñëîâèõ ðÿäàõ îäåðæó¹ìî íåñêií÷åííó ñèñòåìó ëiíiéíèõ
àëãåáðài÷íèõ ðiâíÿíü äðóãîãî ðîäó (ÍÑËÀÐ-11). Â öié ñèñòåìi ìàòðè÷íèé îïåðàòîð ¹
êîìïàêòíèì ó ãiëüáåðòîâîìó ïðîñòîði ÷èñëîâèõ ïîñëiäîâíîñòåé. Ñèñòåìà åôåêòèâíî
ðîçâ'ÿçíà ó ãiëüáåðòîâîìó ïðîñòîði àíàëiòè÷íî äëÿ ãðàíè÷íèõ çíà÷åíü ïàðàìåòðiâ
çàäà÷i i ÷èñåëüíî äëÿ äîâiëüíèõ ïàðàìåòðiâ. Ó ðîáîòi ðîçãëÿíóòî äåÿêi ãðàíè÷íi âà-
ðiàíòè ïîñòàíîâêè çàäà÷.
Êëþ÷îâi ñëîâà: ñïiðàëüíî ïðîâiäíà ñôåðà; êîíóñ; âåðòèêàëüíèé åëåêòðè÷íèé äèïîëü;
ìåòîä ðåãóëÿðèçàöi¨; ñèñòåìà ðiâíÿíü äðóãîãî ðîäó.
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