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Potential theory is important in the theory of subharmonic and δ-subharmonic
functions. In the article we sharpen Azarin’s variant on the convergence of the
sequence of canonical potentials in the space L1,loc(C).
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Нгуен Ван Куинь. Сходимость последовательности канонических
потенциалов в пространстве L1,loc(C). В теории субгармонических
и δ-субгармонических функций существенную роль играет теория по-
тенциала. В статье предлагается усиление варианта Азарина теоремы о
сходимости последовательности канонических потенциалов в пространстве
L1,loc(C).
Ключевые слова: канонический потенциал, мера Радона, широкая сходи-
мость.

Нгуєн Ван Куiнь. Збiжнiсть послiдовностi канонiчних потенцiалiв
в просторi L1,loc(C). У теорiї субгармонiчних i δ-субгармонiчних функцiй
суттєву роль вiдiграє теорiя потенцiалу. У статтi пропонується посилення
варiанту Азарiна теореми про збiжнiсть послiдовностi канонiчних потен-
цiалiв в просторi L1,loc(C).
Ключовi слова: канонiчний потенцiал, мiра Радону, широка збiжнiсть.
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The study of the potential theory and related problems in mathematical
physics has been in the focus of mathematicians since the nineteenth century. In
particular, in the study of subharmonic and δ - subharmonic functions, methods of
the potential theory play an important role. The results in the present paper can
be viewed as the versions of some theorems from monographs of N.S.Landkof [2]
and V.S. Azarin [1]. See also the paper of A. F. Grishin, N. Quynh, and
I. Podiedtseva [3], where the representation theorem for δ -subharmonic functions
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of finite order in the form of canonical potentials was proved, and the paper of
A. F. Grishin and A. Shuigi [4], in which various types of convergence of sequences
of δ-subharmonic functions were studied. The results of our article allow us to
simplify to some extent the constructions from these articles.

In Section 1 we give the necessary definitions and known results in convenient
formulations, where we follow [2] and [1]. In the main section 2 we give new
theorems on the convergence of the sequence of canonical potentials. Note that
when studying canonical potentials, it is necessary to evaluate separately the
corresponding integrals for ζ| < |z| and |ζ| > |z|, since the kernels in these cases
are different. Therefore, these cases are considered separately.

1. Preliminary results
We will use the following notation:

B(0, R) = {z ∈ C : |z| ≤ R};
C(0, R) = {z ∈ C : |z| < R};
S(0, R) = {z ∈ C : |z| = R};

R([R1, R2]) = B(0;R2)/C(0, R1).

A proximate order is an important tool for investigating the functions of finite
order.

An absolutely continuous function ρ(r) on the semiaxis (0,∞) is called a
proximate order ( in the sense of Valiron [5]), if two conditions hold: 1) there
exists the limit ρ = lim

r→∞
ρ(r),

2) lim
r→∞

rρ′(r) ln r = 0 (under ρ′(r) we mean the maximum modulus of the number
of derivative).

In the case when ρ = 0, the proximate order ρ(r) is called the zero proximate
order. We denote V (r) = rρ(r). The proximate order ρ(r) is called a proximate
order of the function f if

σ = lim
r→∞

f(r)

V (r)
∈ (0,∞). (1)

By the equality (1), the value of σ is defined for an arbitrary positive function
f and an arbitrary proximate order ρ(r). It is called the type of the function f
with respect to the proximate order ρ(r). In general, σ ∈ [0,∞]. If the inequality
σ < ∞ holds, then f(r) is called a function of no higher than normal type with
respect to the proximate order ρ(r).

In the case of an arbitrary refined order, an additional condition on the
proximate order looks as follows. An arbitrary proximate order ρ(r) is represented
in the form ρ(r) = ρ+ ρ1(r), where ρ1(r) is the zero proximate order.

The properties of proximate orders can be found in [7], [6], [8]. Let us formulate
several of them we need in what follows.
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Theorem 1 (See [6], Chapter 1, § 12, Lemma 5). Let ρ(r) be an arbitrary
proximate order. Then for any t > 0

lim
r→∞

V (rt)

V (r)
= tρ,

and there is a uniform convergence on any segment [a, b] ⊂ (0,∞).

Theorem 2 (See for example [8], Theorem 2.5). Let ρ(r) be a zero proximate
order. Let

γ(t) = sup
r>0

V (rt)

V (r)
.

Then γ(t) – γ(t) is a continuous function on the semiaxis (0,∞), moreover the
functions γ(t) and γ(1t ) have zero order, that is

lim
t→∞

ln γ(t)

ln t
= lim

t→∞

ln γ(1t )

ln t
= 0.

Remark. There is a global inequality

V (rt) ≤ γ(t)V (r), r, t > 0, (2)

where ρ(r) is the zero proximate order. If ρ(r) is an arbitrary proximate order,
then

V (rt) = (rt)ρ(rt) = tρrρ(rt)ρ1(rt) ≤ γ(t)tρrρV1(r) = γ(t)tρV (r), (3)

where ρ = ρ(∞), and the function γ(t) is constructed using the zero proximate
order ρ1(r).

We define a Radon measure as the difference of two locally finite Borel
measures µ = µ1 − µ2. If µ = µ1 − µ2 is such a representation, then the measure
µ1 is called a positive part of the Radon measure µ and is denoted by µ+. The
measure µ2 is called a negative part of µ and is denoted by µ−. The measure
|µ| = µ+ + µ− is the modulus of the measure µ.

For Radon measures µ the domain of definition consists of all Borel sets E ⊂
G ⊂ C except for those E for which µ1(E) = µ2(E) = +∞.

If there exists a Radon measure µ such that for any continuous compactly
supported function ϕ the relation

lim
n→∞

∫
ϕ(x)dµn(x)→

∫
ϕ(z)dµn(x)

holds, we say that the sequence µn widely converges to µ.
Let µ be the Radon measure in C, ρ(r) the proximate order. The value

σ = lim
r→∞

|µ|(B(0, r))

V (r)

is called a type of µ with respect to the proximate order ρ(r).
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If σ < ∞, then the measure µ is called a measure of no higher than normal
type with respect to the proximate order ρ(r).

If the measure µ is such a measure, then there exists a constant C such that
for r ≥ 1 we have the inequality

|µ|(B(0, r)) ≤ CV (r). (4)

If the measure µ does not load the disk B(0, 1), then the inequality (4) holds
for all r > 0.

Given µ and ρ(r) as above, we denote by µt (t > 0) the following measure

µt(E) =
µ(tE)

V (t)
.

The set of measures ν = lim
n to∞

µtn , where tn → ∞, is called the Azarin limit
set of the measure µ ( with respect to the proximate order ρ(r)) and is denoted
by Fr[µ] or if Fr[µ, ρ(r)], should the need arise.

The results below follow in essence from previous definitions and statements.

Theorem 3 Let µ be the Radon measure in C of no higher than normal type with
respect to the proximate order ρ(r), which does not load the disk B(0, 1). Then
there exists a constant C such that for t > 0 and r > 0 the inequality

|µt|(B(0, r)) ≤ Cγ(r)rρ, ρ = ρ(∞)

holds.

Proof. Taking into account the inequality (4), we have

|µt|(B(0, r)) =
|µ|(B(0, rt))

V (t)
≤ CV (rt)

V (t)
.

The inequality (3) completes the proof.

Theorem 4 (See [9], Theorem 1). Let µ be the Radon measure in C of the type
σ with respect to the proximate order ρ(r), ρ = ρ(∞) > 0. Let the measure µt be
constructed by using the proximate order ρ(r). Then for any measure ν ∈ Fr[µ]
and any r > 0 the inequality

|ν|(B(0, r)) ≤ σrρ

holds.

In the theory of subharmonic and δ-subharmonic functions in the plane C, an
important role is played by the kernel

Kp(z, ζ) = Re

(
ln

(
1− z

ζ

)
+
z

ζ
+ · · ·+ 1

p

zp

ζp

)
,
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where p ∈ N. For all z, ζ ∈ C we have the inequality (see [6], Lemma 2)

|Kp(z, ζ)| ≤M(p)
|z|p

|ζ|p
min

{
1,
|z|
|ζ|

}
, (5)

where M(p) depends only on p. Let µ be the Radon measure in C. We consider
the following potential ∫

C

Kp(z; ζ)dµ(ζ),

which we call the canonical potential of the measure µ.
The convergence of the sequence υn(z) to υ(z) in the space L1,loc(C) means∫

|υn(z)− υ(z)|dγ(z)→ 0 (n→∞),

where the measure γ is the restriction of the Lebesgue measure on the compact
set K ⊂ C.

2. Main results
In this section we prove a series of results on the convergence of a sequence of

canonical potentials.

Theorem 5 Let ρ(r) be a proximate order, ρ = ρ(∞) ≥ 1 be an integer. Let
the measure µ be a measure of no higher than normal type with respect to the
proximate order ρ(r), which does not load the disk B(0, 1). Let the sequence of
measures µtn (tn → ∞) widely converge to the measure ν. Then the sequence of
functions

υn(z) =

∫
B(0,|z|)

Kρ−1(z, ζ)dµtn(ζ)

converges to a function

υ(z) =

∫
B(0,|z|)

Kρ−1(z, ζ)dν(ζ)

in the spaces L1,loc(C).

Proof. Since mu is a measure of no higher than normal type with respect to
the proximate order ρ(r), which does not load the disk B(0, 1), it follows that
there exists a constant M1 such that for all r > 0 we have the inequality

|µtn |(B(0, r)) ≤M1
V (tnr)

V (tn)
.
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Applying the inequality (3), we obtain |µtn |(B(0, r) ≤M1γ(r)r
ρ. Since ν ∈ Fr[µ],

it follows from the theorem 4 that there exists a constant M2 such that for all
r > 0 the inequality |ν|(B(0, r)) ≤M2r

ρ holds.
We denote by αn = µtn − ν. Then there exists a constant M such that we

have
|αn|(B(0, r)) ≤M3γ(r)r

ρ, r > 0. (6)

Let d be an arbitrary number with d ≥ 2. We have

An =

∫
B(0,d)

|υn(z)− υ(z)|dm2(z)

=

∫
B(0,d)

∣∣∣∣∣∣∣
∫

B(0,|z|)

Kρ−1(z, ζ)dαn(ζ)

∣∣∣∣∣∣∣ dm2(z)

=

∫
B(0,d)

∫
B(0,d)

s(z)χB(0,|z|)(ζ)Kρ−1(z, ζ)dαn(ζ)dm2(z),

(7)

where

s(z) = sign g(z),

g(z) =

∫
B(0,|z|)

Kρ−1(z, ζ)dαn(ζ) =

ρ−1∑
k=0

fk(z),

f0(z) =

∫
B(0,|z|)

ln

∣∣∣∣1− 1

ζ

∣∣∣∣ dαn(ζ),
fk(z) =

1

k
Re

zk ∫
B(0,|z|)

1

ζk
dαn(ζ)

 , k = 1, ρ− 1.

The function
∫

B(0,|z|)

1
ζk
dαn(ζ) is a linear combination with complex coefficients

of increasing functions of the variable |z|. Therefore, this function is a Borel
function in C. From this it follows that the functions fk(z), k = 1, ρ− 1, are
Borel functions in the plane C as well.

Consider the function

f̃0(z) =

∫
B(0,|z|)

ln |z − ζ| dαn(ζ) =
∫

B(0,|z|)

χB(0,|z|)(ζ) ln |z − ζ| dαn(ζ).

The function χB(0,|z|)(ζ) ln |z − ζ| is a Borel function of the variables z, ζ.
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We have

I =

∫
B(0,d)

∫
B(0,d)

χB(0,|z|)(ζ) |ln |z − ζ|| dαn(ζ)

≤
∫

B(0,d)

 d∫
0

 2π∫
0

∣∣ln ∣∣reiϕ − ζ∣∣∣∣ dϕ
 rdr

 d|αn|(ζ).

Next, we find

2π∫
0

∣∣ln |reiϕ − ζ|∣∣ dϕ =

2π∫
0

(
2 ln+ |reiϕ − ζ| − 2 ln |reiϕ − ζ|

)
dϕ

≤ 4π ln 2d+ 4πmin

(
ln

1

r
, ln

1

|ζ|

)
.

(8)

d∫
0

 2π∫
0

∣∣ln |reiϕ − ζ|∣∣ dϕ
 rdr

≤ 2πd2 ln 2d−2π

2 ln |ζ|
|ζ|∫
0

rdr + 2

d∫
|ζ|

r ln rdr

 ≤M4(d).

(9)

From these inequalities it follows that I is finite. This and the Tonelli
theorem [10] imply that the function χB(0,|z|) ln |z − ζ| belongs to the space
L1(B(0, d)×B(0, d), dm2 × dαn). Next, the Fubini theorem [10] implies that the
function f̃0(z) is integrable with respect to m2 and, in particular, is a Borel
function. We successively obtain that the functions f0(z), g(z), s(z) are Borel
functions and so the function h(z, ζ) = s(z)χB(0,|z|)(ζ)Kρ−1(z, ζ) of the variables
z, ζ is also the Borel finction on every set B(0, d)×B(0, d).

The finiteness of the integral

∫
B(0,d)

 ∫
B(0,d)

|h(z, ζ)|dm2(z)

 d|αn|(ζ).

can be proved in the same way as the finiteness of I above.
Now Tonelli’s theorem [10] implies

h(z, ζ) ∈ L1(B(0, d)×B(0, d), dm2 × dαn). (10)

Note that this means the finiteness of the four integrals∫
B(0,d)

∫
B(0,d)

(
h(z, ζ)±

)
dm2(z)dα

±
n (ζ).
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From the equality ( ref q8) and the Fubini theorem cite K it follows that

An =

∫
B(0,d)

p(ζ)dαn(ζ), (11)

where

p(ζ) =

∫
B(0,d)

s(z)χB(0,|z|)(ζ)Kρ−1(z, ζ)dm2(z) =

∫
R([|ζ|,d])

s(z)Kρ−1(z, ζ)dm2(z).

Let us prove that the function p(ζ) is continuous on the set C \ {0}. It is easy
to see that the continuity of p(ζ) follows from the continuity of the function

q(ζ) =

∫
R([|ζ|,d])

ln |z − ζ|s(z)dm2(z).

We assume for definiteness that the inequality |ζ0| ≤ |ζ| holds. We have

|q(ζ)− q(ζ0)| ≤
∫

R([|ζ0|,d])

∣∣∣∣ln ∣∣∣∣ z − ζz − ζ0

∣∣∣∣∣∣∣∣ dm2(z) +

∫
R([|ζ0|,|ζ|])

|ln |z − z0|| dm2(z)

≤
∫

R([|ζ0|,d])

ln

(
1 +
|ζ − ζ0|
|z − ζ0|

)
dm2(z) +

|ζ|∫
|ζ0|

 2π∫
0

| ln |reiϕ − ζ0||dϕ

 rdr

= J1 + J2.

The inequality (8) implies the inequality

J2 ≤ 2π|ζ|
(
ln 2d+ ln

1

|ζ0|

)
(|ζ| − |ζ0|).

Also, the inequality

J1 ≤
∫

B(ζ0,2d)

ln

(
1 +
|ζ − ζ0|
|z − ζ0|

)
dm2(z)

holds.
The integral J2 can be estimated from above by using the polar coordinates

with the vertex at ζ0

J2 ≤ 2π

2d∫
0

r ln

(
1 +
|ζ − ζ0|

r

)
dr.

Now the continuity of the function q(ζ) on the set C \ {0} is obvious. Thus,
we have proved the continuity of the function p(ζ) on the set C \ {0}.
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Note that the equality p(ζ) = 0 holds for |ζ| = d. If we assume that p(ζ) = 0
for | | ≥ d, then the equality (11) can be rewritten as

An =

∫
p(ζ)dαn(ζ), (12)

where p( zeta) is a continuous function compactly supported on the set C \ {0}.
If the function p(ζ) were continuous in the whole plane, then the equality 12
would already imply the relation An → 0 (n→∞). However, this is not the case.
Therefore, additional reasoning is required. We evaluate the function p(ζ). The
following estimate stems from the inequalities (5), (9)

|p(ζ)| ≤ M1(d)

|ζ|ρ−1
, |ζ| ≤ 1.

Now let ε be an arbitrary number in the interval (0, 12), 1 = ψ1(ζ)+ψ2(ζ) – a
continuous partition of unity such that supp ψ1 ⊂ B(0, 2ε), supp ψ2∩B(0, ε) = ∅.
Then it follows that

lim
n→∞

An ≤ lim
n→∞

M1(d)

∫
B(0,2ε)

d|αn|(ζ)
|ζ|ρ−1

+ lim
n→∞

∣∣∣∣∫ ψ2(ζ)p(ζ)dαn(ζ)

∣∣∣∣
=M2(d) lim

n→∞

∫
B(0,2ε)

d|αn|(ζ)
|ζ|ρ−1

.

(13)

If ρ = 1, it is easily seen from the resulting inequality that An → 0 (n→∞).
In what follows we assume that ρ > 1. We have

2ε∫
0

d|αn|(t)
tρ−1

=
|αn|(B(0, 2ε)

(2ε)ρ−1
+

1

ρ− 1

2ε∫
0

|αn|(B(0, t))

tρ
dt.

The latter equality along with the inequalities (6), (13) completes the proof
of the theorem.

Theorem 6 Let ρ(r) be a proximate order, ρ = ρ(∞) ≥ 1 be an integer. Let
the measure µ be a measure of no higher than normal type with respect to the
proximate order ρ(r), which does not load the disk B(0, 1). Let the sequence of
measures µtn (tn → ∞) widely converge to the measure ν. Then the sequence of
functions

υn(z) =

∫
CB(0,|z|)

Kρ(z, ζ)dµtn(ζ)

converges to a function

υ(z) =

∫
CB(0,|z|)

Kρ(z, ζ)dν(ζ)

in the spaces L1,loc(C).
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Proof. We denote αn = µtn−ν. Let d be an arbitrary number satisfying d ≥ 2.
We have

Bn =

∫
B(0,d)

|υn(z)− υ(z)|dm2(z)

=

∫
B(0,d)

∣∣∣∣∣∣∣
∫

CB(0,|z|)

Kρ(z, ζ)dαn(ζ)

∣∣∣∣∣∣∣ dm2(z)

=

∫
B(0,d)

∫
s(z)χCB(0,|z|)(ζ)Kρ(z, ζ)dαn(ζ)dm2(z),

(14)

where
s(z) = sign

∫
CB(0,|z|)

Kρ(z, ζ)dαn(ζ).

LetN > d be an arbitrary number, 1 = ψ1(ζ)+ψ2(ζ) be a continuous partition
of unity such that supp ψ1 ⊂ B(0, 2N), supp ψ2∩B(0, N) = ∅. Then the equality
(14) can be rewritten in the form

Bn =

∫
B(0,d)

∫
R((|z|,2N ])

s(z)ψ1(ζ)Kρ(z, ζ)dαn(ζ)dm2(z)

+

∫
B(0,d)

∫
CB(0,N)

s(z)ψ2(ζ)Kρ(z, ζ)dαn(ζ)dm2(z)

= J1,n + J2,n.

(15)

We investigate each of these integrals. We have

J1,n =

∫
B(0,d)

∫
B(0,2N)

h(z, ζ)dαn(ζ)dm2(z),

where h(z, ζ) = s(z)ψ1(ζ)χCB(0,|z|)Kρ(z, ζ). Next, repeating the reasoning in the
theorem 5, we obtain h(z, ζ) ∈ L1(B(0, d)×B(0, 2N), dm2×dαn). From this and
the Fubini theorem [10] it follows that

J1,n =

∫
B(0,2N)

p(ζ)dαn(ζ), (16)

p(ζ) =

∫
B(0,2N)

s(z)ψ1(ζ)χCB(0,|z|)(ζ)Kρ(z, ζ)dm2(z)

=

∫
B(0,|ζ|)

s(z)ψ1(ζ)Kρ(z, ζ)dm2(z).
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Note that p(ζ) = 0 for ζ = 0. Applying the reasoning in theorem 5 after the
equality (11), we obtain that the function p(ζ) is continuous on the set B(0, 2N).

Note that the equality p(ζ) = 0 holds for |ζ| = 2N . If we assume that p(ζ) = 0
for |ζ| = 2N , then the equality (16) can be rewritten as

J1,n =

∫
p(ζ)dαn(ζ), (17)

where p(ζ) is a continuous function compactly supported in C.
From the condition of the lemma it follows that lim

n→∞
J1,n = 0. From this and

the inequality (15) we have

lim
n→∞

Bn ≤ lim
n→∞

J1,n + lim
n→∞

J2,n = lim
n→∞

J2,n

≤M(ρ, d) lim
n→∞

∞∫
N

d|αn|(B(0, t))

tρ+1
,

(18)

where M(ρ, d) is a constant depending only on ρ, d. Integrating by parts in the
last integral, we obtain

∞∫
N

d|αn|(B(0, t))

tρ+1
=
|αn|(B(0, N))

Nρ+1
+

∞∫
N

|αn|(B(0, t))

tρ+2
dt.

The latter equality along with |αn|(B(0, t)) ≤Mtργ(t) and the inequality (18)
imply that Bn → 0 (N →∞). The proof is complete.

Theorem 7 Let ρ(r) be a proximate order with non-integer ρ = ρ(∞) > 0,
p = [ρ]. Let the measure µ be a measure of no higher than normal type with
respect to the proximate order ρ(r), which does not load the disk B(0, 1). Let the
sequence of measures µtn (tn → ∞) widely converge to the measure ν. Then the
sequence of functions

υn(z) =

∫
Kp(z, ζ)dµtn(ζ)

converges to a function

υ(z) =

∫
Kp(z, ζ)dν(ζ)

in the spaces L1,loc(C).

Proof. We have

υn(z) =

∫
B(0,|z|)

Kp(z, ζ)dµtn(ζ) +

∫
CB(0,|z|)

Kp(z, ζ)dµtn(ζ).

The result follows from theorems 5, 6.
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