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Potential theory is important in the theory of subharmonic and §-subharmonic
functions. In the article we sharpen Azarin’s variant on the convergence of the
sequence of canonical potentials in the space Lj joc(C).
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Hryen Ban Kyunp. CxoguMocCTh MOCI€0BATEIBHOCTA KAHOHUYIECKUX
MOTEHINATOB B IpocrpaHcTBe Li;,.(C). B reopun cybrapMoHmuecKux
u §-cyOrapMOHHYIECKUX (DYHKIUN CYIECTBEHHYIO POJb WUIPAET TEOPHs II0-
TeHIMaa. B crarbe mpejiaraeTcsa yCHIeHHe BapuaHTa A3apuHa TEOPEMBI O
CXOJIUMOCTH TOCJIEIOBATEIbHOCTH KAHOHNIECKUX IIOTEHIINAIOB B IIPOCTPAHCTBE
Ll,loc<(c)-

Karouesvie caosa: KaHOHMYECKHIT NOTeHINAJ, Mepa Pajiona, mmpokas cxonu-
MOCTb.

Hryen Ban Kyinb. 36i>KHicTbh HMOCJIiJOBHOCTI KAHOHIYHUX MOTEHIiaJIiB
B 1pocTopi L1 jo.(C). YV Teopil cybrapmonivnux i §-cyGrapMonitaux GyHKIiil
CYTTEBY POJIb BiJIirpae Teopis MOTEHITATY. ¥ CTATTi MPOIOHYETHCS MTOCUICHHST
BapianTy Aszapina Teopemu po 30iKHICTH MOCJIOBHOCTI KAHOHIYHUX MTOTEH-
miaais B mpocTopi L1 joc(C).

Kmowosi caosa: kanoHiaamil morenIiang, mipa Pamony, mmpoka 30iKHICTE.

2000 Mathematics Subject Classification: 31A05, 31B05.

The study of the potential theory and related problems in mathematical
physics has been in the focus of mathematicians since the nineteenth century. In
particular, in the study of subharmonic and ¢ - subharmonic functions, methods of
the potential theory play an important role. The results in the present paper can
be viewed as the versions of some theorems from monographs of N.S.Landkof |2]
and V.S. Azarin [1]. See also the paper of A. F. Grishin, N. Quynh, and
I. Podiedtseva [3|, where the representation theorem for § -subharmonic functions
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of finite order in the form of canonical potentials was proved, and the paper of
A. F. Grishin and A. Shuigi [4], in which various types of convergence of sequences
of d-subharmonic functions were studied. The results of our article allow us to
simplify to some extent the constructions from these articles.

In Section 1 we give the necessary definitions and known results in convenient
formulations, where we follow [2] and [1]. In the main section 2 we give new
theorems on the convergence of the sequence of canonical potentials. Note that
when studying canonical potentials, it is necessary to evaluate separately the
corresponding integrals for (| < |z| and || > |#|, since the kernels in these cases
are different. Therefore, these cases are considered separately.

1. Preliminary results

We will use the following notation:

B(0,R)={z€C: |z| < R};

C(0,R) ={z€C: |z| <R}

S(0,R) ={z€C: |z| =R}
R([R1, Ry]) = B(0; R2)/C(0, Ry).

A proximate order is an important tool for investigating the functions of finite
order.

An absolutely continuous function p(r) on the semiaxis (0,00) is called a
proximate order ( in the sense of Valiron [5]), if two conditions hold: 1) there
exists the limit p = lim p(r),

T—00
2) ILm rp'(r)Inr = 0 (under p/(r) we mean the maximum modulus of the number
T—00

of derivative).

In the case when p = 0, the proximate order p(r) is called the zero proximate
order. We denote V(r) = 7°("). The proximate order p(r) is called a prozimate
order of the function f if

o — T 1)
r—o0 V(1)

€ (0,00). (1)

By the equality (1), the value of o is defined for an arbitrary positive function
f and an arbitrary proximate order p(r). It is called the type of the function f
with respect to the proximate order p(r). In general, o € [0, oc]. If the inequality
o < oo holds, then f(r) is called a function of no higher than normal type with
respect to the proximate order p(r).

In the case of an arbitrary refined order, an additional condition on the
proximate order looks as follows. An arbitrary proximate order p(r) is represented
in the form p(r) = p+ p1(r), where p1(r) is the zero proximate order.

The properties of proximate orders can be found in [7], [6], [8]. Let us formulate
several of them we need in what follows.



6 Hryen Ban Kynnb

Theorem 1 (See [6], Chapter 1, § 12, Lemma 5). Let p(r) be an arbitrary
prozimate order. Then for any t > 0

I — 1P
rhoo V()

and there is a uniform convergence on any segment [a,b] C (0,00).

Theorem 2 (See for example [8], Theorem 2.5). Let p(r) be a zero proximate
order. Let

V(rt)
v(t) = sup .
( ) r>0 V(T)
Then ~(t) — y(t) is a continuous function on the semiazis (0,00), moreover the
functions y(t) and v(}) have zero order, that is

1 1
i 20 _ gy @)
t—soco Int t—oco Int

Remark. There is a global inequality
V(rt) <~)V(r), r,t >0, (2)

where p(r) is the zero proximate order. If p(r) is an arbitrary proximate order,
then
V(rt) = (rt)?") = tPrp (rt) D <y ()PP VA (r) = 4 (P V (1), (3)

where p = p(c0), and the function ~(t) is constructed using the zero proximate
order pi(r).

We define a Radon measure as the difference of two locally finite Borel
measures g = p1 — po. If = pp — po is such a representation, then the measure
1 is called a positive part of the Radon measure p and is denoted by p*. The
measure uo is called a negative part of u and is denoted by p~. The measure
|u| = u™ + p~ is the modulus of the measure .

For Radon measures p the domain of definition consists of all Borel sets £ C
G C C except for those E for which p(E) = po(E) = 4o0.

If there exists a Radon measure g such that for any continuous compactly
supported function ¢ the relation

n—oo

lim | p(@)dpn(z) = / o(2)dpin(2)

holds, we say that the sequence u,, widely converges to .
Let p be the Radon measure in C, p(r) the proximate order. The value

L lB.)
r—00 Vi(r)

is called a type of p with respect to the proximate order p(r).
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If 0 < oo, then the measure p is called a measure of no higher than normal
type with respect to the proximate order p(r).

If the measure p is such a measure, then there exists a constant C' such that
for r > 1 we have the inequality

[l (B(0,7)) < CV(r). (4)

If the measure p does not load the disk B(0, 1), then the inequality (4) holds
for all » > 0.
Given p and p(r) as above, we denote by p; (¢t > 0) the following measure

_ ptE)
pe(E) = OB

The set of measures v = litm e, , where t, — 00, is called the Azarin limit
n toco

set of the measure p ( with respect to the proximate order p(r)) and is denoted
by Fr{u] or if Fr[u, p(r)], should the need arise.
The results below follow in essence from previous definitions and statements.

Theorem 3 Let u be the Radon measure in C of no higher than normal type with
respect to the proximate order p(r), which does not load the disk B(0,1). Then
there exists a constant C such that for t > 0 and r > 0 the inequality

(1| (B(0,7)) < Cy(r)r?, p= p(c0)
holds.

Proof. Taking into account the inequality (4), we have

The inequality (3) completes the proof.

Theorem 4 (See [9], Theorem 1). Let p be the Radon measure in C of the type
o with respect to the proximate order p(r), p = p(co) > 0. Let the measure p; be
constructed by using the prozimate order p(r). Then for any measure v € Fr{ul]
and any r > 0 the inequality

lv|(B(0,1)) < orf

holds.

In the theory of subharmonic and d-subharmonic functions in the plane C, an
important role is played by the kernel

1 2P
)
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where p € N. For all z, ( € C we have the inequality (see [6], Lemma 2)

Ky(2,0)] < M<p>}§:zmin{1, ’C‘} (5)

where M (p) depends only on p. Let p be the Radon measure in C. We consider
the following potential

[ oz 0anto)
C

which we call the canonical potential of the measure .
The convergence of the sequence vy, (2) to v(2) in the space L jo.(C) means

/ [un(2) — v(2)ldy(z) =0 (n - o),

where the measure -y is the restriction of the Lebesgue measure on the compact
set K C C.

2. Main results

In this section we prove a series of results on the convergence of a sequence of
canonical potentials.

Theorem 5 Let p(r) be a proximate order, p = p(oco) > 1 be an integer. Let
the measure p be a measure of no higher than normal type with respect to the
prozimate order p(r), which does not load the disk B(0,1). Let the sequence of
measures i, (t, — 00) widely converge to the measure v. Then the sequence of
functions

vp(2) = / Kp-1(2,¢)dp, (C)
B(0,]z])

converges to a function

U(Z) = / Kp—l(Z’C)dV(C)

B(0,]z])

in the spaces Ly 1o.(C).

Proof. Since mu is a measure of no higher than normal type with respect to
the proximate order p(r), which does not load the disk B(0,1), it follows that
there exists a constant M; such that for all » > 0 we have the inequality

V(tnr)
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Applying the inequality (3), we obtain |u, |(B(0,7) < Mi~vy(r)rf. Since v € Fr{u],
it follows from the theorem 4 that there exists a constant Ms such that for all

r > 0 the inequality |v|(B(0,r)) < Mar? holds.

We denote by o, = p¢,, — v. Then there exists a constant M such that we

have
[ (B(0,7)) < M3y (r)r?, r > 0.

Let d be an arbitrary number with d > 2. We have

A, = / lon(2) — v(2)|dma(2)

B(0,d)

/ [ Eomite:Qdan(0)| dma)

(0]2])

/ / X0 (O Ep1 (2, C)darn (C)dma (=),

where

5(2) = sign (=),

p—1
o(2) = / Kpo1(2, Odan(Q) = 3 ful2),
B(0,]2]) k=0
fo(z) = / In 1—2 da,(€)
B(0,]2)
fr(z) = %Re 2k / Clkdan(g) yk=1,p—1
B(0,]2)

(6)

The function [ X da,(¢) is a linear combination with complex coefficients

B(0,]2])

of increasing functions of the variable |z|. Therefore, this function is a Borel
function in C. From this it follows that the functions fi(z), & = 1,p — 1, are

Borel functions in the plane C as well.
Consider the function

folz) = / In |2 — ¢[ don(C) = / X0 () 1|2 — ¢ dan(©).

B(0,]2]) B(0,]2])

The function xp(o,»)(¢) In |z — ¢ is a Borel function of the variables z, (.
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We have
I= [ [ xsesmn© s = dldan
B(0,d) B(0,d)
d 27
< / (/lnrei‘pgdgo rdr | d|a,|(Q).
B(0,d) \0 \0O
Next, we find

27 27
/ In|re’” — (|| dp = / (2In" |re’® — ¢ — 21n|re’? — () dy
0 0 (8)

1 1
< 47 In2d + 47 min (111, ln|<|> .
r

d 2
/ /‘ln|rew—<‘d<p rdr
0 \0

| J (9)
< 27wd*In2d—2m 21n\q/rdr+2/r1nrdr < My(d).
0 <l

From these inequalities it follows that [ is finite. This and the Tonelli
theorem [10] imply that the function xp(,.)In|z — ¢| belongs to the space
L1(B(0,d) x B(0,d),dmg x day,). Next, the Fubini theorem [10] implies that the
function fg(z) is integrable with respect to msy and, in particular, is a Borel
function. We successively obtain that the functions fy(z),g(z),s(z) are Borel
functions and so the function h(z,() = s(2)Xp(o,2|)(¢)Kp-1(z,¢) of the variables
2z, is also the Borel finction on every set B(0,d) x B(0,d).

The finiteness of the integral

[ [ weodme | dade).

B(0,d) (0,d)

can be proved in the same way as the finiteness of I above.
Now Tonelli’s theorem [10] implies

h(z,¢) € Li(B(0,d) x B(0,d), dms x daw,). (10)

Note that this means the finiteness of the four integrals

/ / (h(z, O)*) dma(2)da (©).
B(0,d) B(0,d)
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From the equality ( ref q8) and the Fubini theorem cite K it follows that

A, = / Q) dan (), (11)
B(0,d)
where
p@>::l/ (X802 (O Kyt (2, Odma(2) = /" () K pr (2 O)dma(2).
B(0,d) R([[¢],d])

Let us prove that the function p(¢) is continuous on the set C\ {0}. It is easy
to see that the continuity of p(¢) follows from the continuity of the function

90 = / In |z — Cls(z)dma (2).
R([[¢],d])

We assume for definiteness that the inequality |(o| < |¢] holds. We have

() — a(o)| < / ‘ln j__é dma(2) + / In |z — zo|| dma(z)
R([I¢ol.d]) R([I<ol5I<1D)
I<| 2m
‘C - 40‘ ip
< In {1+ 2= Gol dma(z) + |In|re'” — (ol|de | rdr
Z =60
R([I¢ol.d]) IGo| \O
=Ji+ Jo.

The inequality (8) implies the inequality

hS%M<MM+MQOUQ—MU

Also, the inequality

Ji < / 1n<1+’<_co’>dm2(z)

|2 = Co
B(¢o,2d)

holds.
The integral Js can be estimated from above by using the polar coordinates

with the vertex at (g
2d
Jo < 271'/7“111 (1 + |C_<O|> dr.
r
0

Now the continuity of the function ¢(¢) on the set C\ {0} is obvious. Thus,
we have proved the continuity of the function p(¢) on the set C\ {0}.
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Note that the equality p(¢) = 0 holds for |¢| = d. If we assume that p(¢) =0
for | | > d, then the equality (11) can be rewritten as

Anzzj}xodan@% (12)

where p( zeta) is a continuous function compactly supported on the set C\ {0}.
If the function p(¢) were continuous in the whole plane, then the equality 12
would already imply the relation A,, — 0 (n — o0). However, this is not the case.
Therefore, additional reasoning is required. We evaluate the function p(¢). The
following estimate stems from the inequalities (5), (9)

My (d)
PO < Jpr Il <1

Now let € be an arbitrary number in the interval (0, %), 1 =1(¢) +12(C) -
continuous partition of unity such that supp 91 C B(0,2¢), supp ¥2NB(0,¢) = (.
Then it follows that

m&smmw/dm”+mvwmwmo

n—00 n—o00 |C|P 1 n—o00
B(0,2¢)
(13)
2 n—+00 |C’P_1 ’
B(0,2¢)

If p =1, it is easily seen from the resulting inequality that A,, — 0 (n — 00).
In what follows we assume that p > 1. We have

2e 2¢e
dlon|(t) _ |an|(B(0,2¢) 1 [ |an|(B(0,1))
/ =1 (2e)p1 N p— 1/ tr
0

0

The latter equality along with the inequalities (6), (13) completes the proof
of the theorem.

Theorem 6 Let p(r) be a prozimate order, p = p(co) > 1 be an integer. Let
the measure p be a measure of no higher than normal type with respect to the
proximate order p(r), which does not load the disk B(0,1). Let the sequence of
measures i, (t, — 00) widely converge to the measure v. Then the sequence of
functions

/K O, (O)
CB(0,|z])

converges to a function
/ K, (2, Q)dv(Q)
CB(0,]2)

in the spaces L1 joc(C).
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Proof. We denote o, = iy, —v. Let d be an arbitrary number satisfying d > 2.
We have

Bu= [ lon(e) = vo(a)ldma2)

B(0,d)
= / / K,(z,¢)dan(Q)| dma(z) (14)
B(0,d) CB(0,]z])

/ / 2)xen(042) (O Fp (2 O dan(O)dma(2),

where
= sign / K,(z,()doy(Q).
CB(0,|z])

Let N > d be an arbitrary number, 1 = 11 ({)+12(¢) be a continuous partition
of unity such that supp 1 C B(0,2N), supp 2N B(0, N) = (). Then the equality
(14) can be rewritten in the form

B, — / / (@)1 K2, C)daun (C)dma(2)

B(0,d) R((|z],2N1])
+ / / S22 O K (2, ) darn(O)dma(2)
B(0,d) CB(0,N)
:Jl,n+J2,n-

(15)

We investigate each of these integrals. We have

ho= [ [ heOdan@dma(e),

B(0,d) B(0,2N)

where h(z, () = s(2)¥1(¢)xcB0,2)) Kp(2, (). Next, repeating the reasoning in the
theorem 5, we obtain h(z, () € L1(B(0,d) x B(0,2N), dmgy x day,). From this and
the Fubini theorem [10] it follows that

Jip = / p(O)dan(©), (16)

B(0,2N)
p(¢) = / S(@)91(OXeB0,2)) (O Koz, Odma(z)
B(0,2N)

- / S(2)01 () K (2, C)dma(2).
B(0,[¢)
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Note that p(¢) = 0 for ( = 0. Applying the reasoning in theorem 5 after the
equality (11), we obtain that the function p({) is continuous on the set B(0,2N).

Note that the equality p(¢) = 0 holds for |(| = 2N. If we assume that p(¢) = 0
for |(| = 2N, then the equality (16) can be rewritten as

T = [ DO (©) am)

where p(() is a continuous function compactly supported in C.
From the condition of the lemma it follows that lim J;, = 0. From this and
n—oo

the inequality (15) we have

lim B, < hm Jin + hrn Jon = hm Jon

o 18
<MM@¢M/“5JV "

N

where M (p,d) is a constant depending only on p, d. Integrating by parts in the
last integral, we obtain

oo
dlan|(B(0,t)) _ |an|(B [ lonl(B
trt+1 - Np+1 tp+2

N

The latter equality along with |ay,|(B(0,t)) < MtPv(t) and the inequality (18)
imply that B, — 0 (N — o0). The proof is complete.

Theorem 7 Let p(r) be a prozimate order with non-integer p = p(c0) > 0,
p = [p]. Let the measure p be a measure of no higher than normal type with
respect to the proximate order p(r), which does not load the disk B(0,1). Let the
sequence of measures p, (t, — 00) widely converge to the measure v. Then the
sequence of functions

2 = [ Kyle. O, (0

@=/M@ow@

converges to a function

in the spaces L1 joc(C).

— [ Kl @+ [ Kol Odin, ©).

B(0,]z[) CB(0,]2])

Proof. We have

The result follows from theorems 5, 6.
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