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We study the behavior of solutions of parabolic equation with double
nonlinearity and a degenerate absorption term.
The main topic of interest is the property of �nite time extinction, i.e., the
solution vanish after �nite time.
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1. Introduction

The theory of quasilinear parabolic equations has been developed since the
50-s of the 19th century. The properties of these equations di�er greatly from
those of linear equations. These di�erences were revealed in the scienti�c papers
of the mathematicians: Barenblatt G. I., Oleinic O. A., Kalashnikov A. S., Zhou
Yu Lin and others. The properties under consideration are the �nal velocity of
propagation of the support of the solutions, time compact support property and
long-time extinction of solutions in �nite time and so on. Hundreds of outstanding
scientists all over the world closely scrutinize these properties (V. A. Kondratiev,
G. A. Iosif'yan, E. V. Radkevich, J. I. Diaz, L. Veron, A. E. Shishkov, B. Hel�er,
Y. Belaud, M. Fila, D. Andreucci, V. Vespri, A.F. Tedeev and others). The most
important aspect of such investigations is the description of structural conditions
a�ecting the appearance and disappearance of various non-linear phenomena.

Our investigations are devoted to the study of the extinction of solutions
in �nite time to initial-boundary value problems for a wide classes of nonlinear
parabolic equations of the second orders with a degenerate absorption potential,
whose presence plays a signi�cant role for the mentioned nonlinear phenomenon.

This paper is organized as follows:
(1) Introduction.
(2) Brief history of the problem.
(3) The problem statement.
(4) Main Result.
(5) The proof of main result.
(6) Appendix.
Acknowledgements.
References.

2. Brief history of the problem

As well known the extinction property means that any solution of the
mentioned equation vanishes in Ω in a �nite time.

The questions of a detailed characterization of the e�ect of extinction of
a solution (estimates of the extinction time, asymptotic behavior near the
extinction time, etc.) for various classes of semilinear parabolic equations of
the di�usion�absorption type were studied in many works (see, e.g., [1]�[6] and
references therein). For example, for the following equation

∂tu−∆u+ a0(x)uλ = 0,

the extinction property in a �nite time was studied by several authors. In fact this
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type of equation is a simple model to understand some phenomelogical properties
of nonlinear heat conduction.

• It is well-known that in case of non-degenerate absorption potential, i.e.,

when a0(x) ≥ c = const > 0

the solution u(t, x) of parabolic equation of non-stationary di�usion with
double nonlinearity and a degenerate absorption term vanishes for

t ≥ T0 =
‖u0‖1−λL∞

c(1− λ)
,

where u0 is initial data from Cauchy condition. This fact was proved by
J. Diaz, L. Veron, S. Antontsev, S.I. Shmarev (see, for example, works [7]
and [8]).

It is very important to note here, that on the opposite (see papers of
M. Cwikel [9], L. Evans, B. Gidas), if we assume that absorption potential
is identically equal to zero: a0(x) ≡ 0 for any x from some connected open
subset ω ⊂ Ω, then there exists solution which never vanish on whole Ω, as
any solution u(x, t) of corresponding equation

∂tu−∆u = 0 in ω × (0,∞)

is bounded from below by

σ exp(−tλω)ϕω(x) on ω × (0,∞),

where

σ = ess inf
ω
u0 > 0,

λω and ϕω are �rst eigenvalue and corresponding eigenfunction of −∆ in
W 1,2

0 (ω).

Obviously, that between those two cases there exists a wide class of
situations. Thus, an open problem is to �nd sharp border which distinguish
two di�erent properties.

• The paper [10] V.A. Kondratiev and L. Veron must be considered as the
�rst one where the extinction-property in a �nite time was systematically
investigated for a semilinear parabolic equation in the case of a non-constant
strong absorption term, depending both on the media and the temperature
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u (i.e. in the case of general potential a0 ≥ 0)). They used the fundamental
states of the associated Schr�odinger operator

µn = inf

{∫
Ω

(|∇ψ|2 + 2na0(x)ψ2) dx :

ψ ∈W 1,2(Ω),

∫
Ω
ψ2dx = 1

}
, n ∈ N,

and proved that, if
∞∑
n=0

µ−1
n ln(µn) <∞,

then Cauchy-Neumann problem for non-stationary di�usion with absorption
term with possesses the extinction property.

But, unfortunately, under this form obtained result is not easy to apply.

• Y. Belaud, B. Hel�er and L. Veron [11] obtained an explicit su�cient
condition in the term of potential a0(x) which imply that any solution of
above equations (with 0 ≤ λ < 1) vanishes in �nite time. In the work [11]
also establish a series of su�cient conditions on a0(x) which imply that any
supersolution with positive initial data does not to vanish identically for
any positive t. The method in [11] was based on the so-called semiclassical
analysis [12], which uses sharp estimates of the spectrum of some Shr�odinger
operators and it was also assumed that solution has a certain regularity (as,
in particular, in their approach the exact upper estimates of ‖u(t, x)‖L∞(Ω))
were used). Unfortunately, such an estimate is di�cult to obtain or just
is unknown for solutions of equations of more general structure than we
considered above.

• A. Shishkov and Y. Belaud (see the paper [13]) were the �rst who
investigated the initial-boundary-value problem to mentioned above equation
with degenerated absorption potential with the help of two di�erent
methods. The �rst one is a variant of a local energy method (for a radial
potential), which uses no �additional� properties of regularity of solutions.
And the second one is derive from semiclassical limits of some Shr�odinger
operators (for any degenerate potential).

So, in this article we consider the behavior of solutions for a much more general
class of nonlinear equations which need not satisfy any comparison principle
between solutions, namely we study the parabolic equation of non-stationary
di�usion with double nonlinearity and a degenerate absorption term:

(
|u|q−1u

)
t
−

n∑
i=1

∂

∂xi

(
|∇xu|q−1 ∂u

∂xi

)
+ a0(x)|u|λ−1u = 0 in Ω× (0, T ),
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where Ω is bounded domain in RN , N > 1, 0 ∈ Ω, a0(x) ≥ d0 exp
(
− ω(|x|)
|x|q+1

)
, x ∈

Ω \ {0}, d0 = const > 0, 0 ≤ λ < q, ω(·) ∈ C([0,+∞)), ω(0) = 0, ω(τ) > 0 when
τ > 0. Modifying the semiclassical analysis [13] and [14], we obtain a condition
on the function ω(·) that ensures the extinction.

3. The problem statement

Let Ω is C1 a bounded connected open set of RN (N > 1). The aim of
this paper is to investigate the time vanishing properties for energy solutions
to initial�boundary value problems for the quasi-linear parabolic equation with
neutral di�usion:


(
|u|q−1u

)
t
−

N∑
i=1

∂
∂xi

(
|∇xu|q−1 ∂u

∂xi

)
+ a0(x)|u|λ−1u = 0 in Ω× (0,+∞),

∂u

∂n
= 0 on ∂Ω× [0,+∞),

u(x, 0) = u0(x) on Ω.

(3.1)

The parameters of the equation satisfy the following relationships:
0 ≤ λ < q, the absorption potential a0(x) is a non-negative continuous function,
and u0 ∈ Lq+1(Ω). It is assumed also that the origin 0 belongs to Ω and that
a0(x) degenerates at the origin.

De�nition 1 Following [15], an energy solution of problem (3.1) is the function

u(t, x) ∈ Lq+1, loc

(
[0,+∞);W 1

q+1(Ω)
)

such that:

∂

∂t

(
|u|q−1u

)
∈ L q+1

q
, loc

(
[0,+∞);

(
W 1
q+1(Ω)

)∗)
, u(0, x) = u0(x)

and satisfying the following integral identity:

∫ T

0
〈(|u|q−1u)t, ϕ〉dt+

∫ T

0

∫
Ω

( N∑
i=1

|∇xu|q−1 ∂u

∂xi

∂ϕ

∂xi
+ a0(x)|u|λ−1uϕ

)
dxdt = 0

for arbitrary ϕ(t, x) ∈ Lq+1, loc([0,+∞);W 1
q+1(Ω)) ∀T < +∞.

Remark 1 In the integral equality of De�nition 1, 〈·, ·〉 stands for the bilinear
operation of pairing of elements of the space V and its dual V ∗.

Remark 2 We note that the existence of an energy (weak) solution of problem (3.1)
follows from results in [16].
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De�nition 2 If for any solution u(x, t) of the mentioned problem exist
0 < T < +∞ such that u(x, t) = 0 a.e. in Ω ∀t ≥ T , then solution vanishes
in Ω in a �nite time.

Let for an arbitrary potential a0(x) from (3.1) exist radial minorant

a0(x) ≥ d0 exp
(
− ω(|x|)
|x|q+1

)
:= a(|x|) ∀x ∈ Ω, d0 = const > 0, (3.2)

where ω(·) is a continuous function on [0,+∞), that is a continuously di�erentiable
on the (0,+∞), a nondecreasing function. We also suppose that function ω(s) from
condition (3.2) satis�es the conditions:

(A) ω(τ) > 0 ∀τ > 0,

(B) ω(0) = 0,

(C) ω(τ) ≤ ω0 = const <∞ ∀τ ∈ R1
+

4. Main Result

The main result of the present work is the following theorem.

Theorem 1 Let 0 ≤ λ < q in equation from (3.1), initial data u0(x) ∈ Lq+1(Ω),
function ω(·) from (3.2) satisfy assumptions (A), (B), (C) and the main condition
of Dini type: ∫

0+

ω(τ)

τ
dτ <∞. (4.1)

Suppose also that ω(·) satis�es the following technical condition

ω(τ) ≥ τ q+1−δ ∀ τ ∈ (0, τ0), 0 < δ < q. (4.2)

Then an arbitrary energy solution u(x, t) of the problem (3.1) vanishes in �nite
time.

Remark 3 Note, that Theorem 1 is a generalization of the corresponding
statement, which was obtained in [13] and coincides with it under q = 1.

Remark 4 In addition, also note here that result, which was obtained in [17] by
a local energy estimates (where the author established a condition of the Dini type
for the function ω(·):

c∫
0

ω(τ)

τ
dτ <∞,

ensuring the extinction of an arbitrary solution in a �nite time, was found as
well) coincides with Theorem 1 of this article. But on the contrary with [17] the
proof here is carried out by using a di�erent technique � in the spirit of paper
[13]. As we noticed above the proof of Theorem 1 is based on some variant of the
semi-classical analysis, which was developed, particulary in [18, 19, 9, 12, 11, 13].
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5. The proof of main result

First, we introduce for h > 0 and α > 0 the following spectral characteristics:

λ1(h) = inf

{∫
Ω
|∇v|q+1 + h−(q+1)a(|x|)|v|q+1 dx : v ∈W 1,q+1(Ω),

||v||Lq+1(Ω) = 1

}
,

and
µ(α) = λ1(α

q−λ
q+1 ).

We de�ne
r(z) = a−1(z)

or equivalently

z = a(r(z)) and ρ(z) = z(r(z))q+1 for z small enough.

Scheme of the proof:

1) The �rst step in the proof of Theorem 1 is the two-side estimation of ρ−1

in a neighbourhood of zero.

2) We will use the following statement for spectral characteristics λ1(h).

Lemma B (Corollaries 2.28, 2.31 in [14]) Under assumptions (A)−(C) and (4.2),
there exist four positives constants C1, C2, C3 and C4 such that

C1h
−(q+1)ρ−1(C2h

q+1) ≤ λ1(h) ≤ C3h
−(q+1)ρ−1(C4h

q+1)

for h > 0 small enough.

3) Then, due to the two-side estimation of ρ−1 from �rst step of our proof,

we continue inequality in Lemma B for h = α
q−λ
q+1 .

4) Finally, we will check up that the condition from the following Theorem is
satis�es:

Theorem BHV (Theorem 2.2 in [11], p. 50). Under assumptions (A) − (C), if
there exists a decreasing sequence (αn) of positive real numbers such that

+∞∑
n=0

1

µ(αn)

(
ln(µ(αn)) + ln

(
αn
αn+1

)
+ 1

)
< +∞,

then an arbitrary energy solution u(x, t) of the problem (3.1) vanishes in �nite
time.
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Lemma 1 Under assumptions (A)-(C) and (4.2) there holds

s

(1 + γ)
ln

(
d0

s

)ω

ω0(1 + γ)

ln
(
d0
s

)
 1

q+1



−1

≤ ρ−1(s) ≤

≤ s ln

(
d0

s

)ω

 1

ln
(
d0
s

)
 1

δ



−1

, (5.1)

for arbitrary γ > 0, for all s > 0 small enough.

Proof:
Since ω is a nondecreasing function, from Lemma 4 it follows that

ω


 1

ln
(
d0
z

)
 1

δ

 ≤ ω(r(z)) ≤ ω


 ω0

ln
(
d0
z

)
 1

q+1

 .

Therefore, substituting the de�nition of ω(r) (see (6.3)), we obtain

ω


 1

ln
(
d0
z

)
 1

δ

 ≤ (r(z))q+1 ln

(
d0

z

)
≤ ω


 ω0

ln
(
d0
z

)
 1

q+1

 ,

or

1

ln
(
d0
z

)ω

 1

ln
(
d0
z

)
 1

δ

 ≤ (r(z))q+1 ≤ 1

ln
(
d0
z

)ω

 ω0

ln
(
d0
z

)
 1

q+1

 .

It follows the estimate for ρ(z) (as ρ(z) = z(r(z))q+1 for z small enough):

z
1

ln
(
d0
z

)ω

 1

ln
(
d0
z

)
 1

δ

 ≤ ρ(z) ≤ z 1

ln
(
d0
z

)ω

 ω0

ln
(
d0
z

)
 1

q+1

 . (5.2)

By an easy calculation, we have

ρ(z) ln

(
d0

z

)ω

 ω0

ln
(
d0
z

)
 1

q+1



−1

≤ z ≤

≤ ρ(z) ln

(
d0

z

)ω

 1

ln
(
d0
z

)
 1

δ



−1

. (5.3)
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Let here and further ρ−1(s) = z. Substituting z = ρ−1(s) in (5.3) yields

s ln

(
d0

ρ−1(s)

)ω

 ω0

ln
(

d0
ρ−1(s)

)
 1

q+1



−1

≤ ρ−1(s) ≤

≤ s ln

(
d0

ρ−1(s)

)ω

 1

ln
(

d0
ρ−1(s)

)
 1

δ



−1

.

In consideration of such fact, that from (5.2), we have for z small enough, ρ(z) ≥ z,
which gives ρ−1(s) ≤ s. Since ω(·) is a nondecreasing function, due to (6.4), we
get

s ln

(
d0

s
− 1

1+γ

)ω

 ω0

ln

(
d0

s
− 1

1+γ

)


1
q+1



−1

≤ ρ−1(s) ≤

≤ s ln

(
d0

s

)ω

 1

ln
(
d0
s

)
 1

δ



−1

,

which completes the proof. 2

Now let us prove the two-sided estimate for µ(α).

Lemma 2 Under assumptions (A)−(C) and (4.2), there exist positives constants
K ′′1 , K

′′
2 and K ′′3 such that

K ′′1 ln

(
1

α

)ω( K ′′2(
ln
(

1
α

)) 1
q+1

)−1

≤ µ(α) ≤ K ′′3 ln

(
1

α

) q+1
δ

. (5.4)

for α > 0 small enough.

Proof: Due to the two-side estimation of ρ−1 (5.1) from Lemma 1 (it was the

�rst point of our proof), we continue inequality in Lemma B for h = α
q−λ
q+1 , and
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we get

K1 ln

(
d0

C2hq+1

)ω
 K2(

ln
(

d0
C2hq+1

)) 1
q+1



−1

≤ λ1(h) ≤

≤ K3 ln

(
d0

C4hq+1

)ω
 1(

ln
(

d0
C4hq+1

)) 1
δ



−1

,

and since ω−1(r) ≤ r−(q+1−δ) due to (4.2):ω
 1(

ln
(

d0
C4hq+1

)) 1
δ



−1

≤

 1(
ln
(

d0
C4hq+1

)) 1
δ


−(q+1−δ)

.

Let us consider the right side of inequality: 1(
ln
(

d0
C4hq+1

)) 1
δ


−(q+1−δ)

=

(
ln

(
d0

C4hq+1

))− 1
δ
·−(q+1−δ)

=

(
ln

(
d0

C4hq+1

)) q+1−δ
δ

as a result:

K1 ln

(
d0

C2hq+1

)ω
 K2(

ln
(

d0
C2hq+1

)) 1
q+1



−1

≤ λ1(h) ≤

≤ K3 ln

(
d0

C4hq+1

)
· ln
(

d0

C4hq+1

) q+1−δ
δ

,

�nally, we have

K1 ln

(
d0

C2hq+1

)ω
 K2(

ln
(

d0
C2hq+1

)) 1
q+1



−1

≤ λ1(h) ≤

≤ K3 ln

(
d0

C4hq+1

)1+ q+1−δ
δ

,

which leads to

K ′1 ln

(
1

h

)ω
 K ′2(

ln
(

1
h

)) 1
q+1

−1

≤ λ1(h) ≤ K ′3 ln

(
1

h

) q+1
δ

. (5.5)
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The real number α is de�ned by

h = α
q−λ
q+1

and thus we complete the proof. 2

Lemma 3 Under (A)− (C) with (4.2), if

+∞∑
n=n0

ω

(
1

(n lnn)
1
q+1

)
n

< +∞, (5.6)

then all solutions of (3.1) vanish in a �nite time. Moreover,

+∞∑
n=n0

ω

(
1

(n lnn)
1
q+1

)
n

< +∞ ⇐⇒
∫

0+

ω(x)

x
dx < +∞. (5.7)

Proof:
From Theorem BHV, if (αn) is a decreasing sequence of positive real numbers

and

+∞∑
n=n0

ω

 C′′2(
ln
(

1
αn

)) 1
q+1


ln
(

1
αn

) [
ln

(
ln

(
1

αn

))
+ ln

(
αn
αn+1

)
+ 1

]
< +∞,

then all the solutions of (3.1) vanish in a �nite time.

Let αn = n−Kn for some K > 0, then:

ln

(
1

αn

)
= Kn lnn,

ln

(
ln

(
1

αn

))
∼ lnn,

because

ln

(
ln

(
1

αn

))
∼ ln(Kn lnn) = lnn+ln lnn+lnK << lnn+lnn+ const ∼ lnn,

and

ln

(
αn
αn+1

)
= −Kn lnn+K(n+ 1) ln(n+ 1) =

= Kn ln(
n+ 1

n
) +K ln(n+ 1) ∼ Kn 1

n
+K lnn ∼ K lnn,
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and, obviously,
1 = o(lnn),

which leads us to (5.6).

Let's show that (5.7) is true. In fact, it is easy to see that

+∞∑
n=n0

ω

(
1

(n lnn)
1
q+1

)
n

< +∞ ⇐⇒
∫ +∞

n0

ω

(
1

(t ln t)
1
q+1

)
t

dt < +∞.

Now, let

x = (t ln t)
− 1
q+1 ,

then

dx = − 1

(q + 1)(t ln t)
1
q+1

· ln t+ 1

ln t
· dt
t
,

since
ln t

lnt+ 1
→ 1 as t→ +∞,

hence

∫ +∞

n0

ω

(
1

(t ln t)
1
q+1

)
t

dt is �nite if and only if (q + 1)

∫ c

0

ω(x)

x
dx < +∞,

which completes the proof of our main Theorem. 2

6. Appendix

Lemma 4 Let the function ω(·) from (3.2) satisfy (A)�(C) and technical
condition (4.2). Then for z = a(r(z)) > 0 small enough it is true the following
estimate:  1

ln
(
d0
z

)
 1

δ

≤ r(z) ≤

 ω0

ln
(
d0
z

)
 1

q+1

. (6.1)

Proof:
Starting from condition (4.2) (ω(τ) ≥ τ q+1−δ ∀ τ ∈ (0, τ0), 0 < δ < q) and just

using assumption (C) on the function ω(·) (ω(τ) ≤ ω0 = const <∞ ∀τ ∈ R1
+) we

easily arrive at
rq+1−δ ≤ ω(r) ≤ ω0. (6.2)

Since for z = a(r(z)), from (3.2):

a(r(z)) = d0 exp
(
− ω(r(z))

(r(z))q+1

)
, d0 = const > 0,
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it follows that
z

d0
= exp

(
− ω(r(z))

(r(z))q+1

)
,

then

ln

(
d0

z

)
= − ω(r(z))

(r(z))q+1
,

which equivalently

ln

(
d0

z

)
=

ω(r(z))

(r(z))q+1
.

So, we conclude that

ω(r(z)) = (r(z))q+1 ln

(
d0

z

)
. (6.3)

Due to (6.2) and (6.3) it is easy to see the relationship

r(z)q+1−δ ≤ (r(z))q+1 ln

(
d0

z

)
≤ ω0,

which completes the proof of Lemma 4, because the last one means:

r(z)q+1−δ

ln
(
d0
z

) ≤ (r(z))q+1

and

(r(z))q+1 ln

(
d0

z

)
≤ ω0.

This fact give us
1

ln
(
d0
z

) ≤ (r(z))δ

and
(r(z))q+1 ≤ ω0

ln
(
d0
z

) respectively.

Hence,  1

ln
(
d0
z

)
 1

δ

≤ r(z) and r(z) ≤

 ω0

ln
(
d0
z

)
 1

q+1

.

2

Lemma 5 Let the function ω(·) from (3.2) satisfy (A)�(C) and technical
condition (4.2). Then the following inequality hold for any γ = cont > 0:

ρ−1(s) ≤ s
1

1+γ . (6.4)
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Proof: By using (6.1) and ρ(z) = z(r(z))q+1,

ρ(z) ≥ z

 1

ln
(
d0
z

)


q+1
δ

⇐⇒ 1

ρ(z)
≤ 1

z

(
ln

(
d0

z

)) q+1
δ

,

or equivalently,

ln

(
1

ρ(z)

)
≤ ln

(
1

z

)
+
q + 1

δ
ln

(
ln

(
d0

z

))
.

Due to

ln(ln(z−1)) << ln z−1 for z small enough,

we obtain

ln

(
1

ρ(z)

)
≤ (1 + γ) ln

(
1

z

)
⇐⇒ ρ(z) ≥ z1+γ =⇒ ρ−1(s) ≤ s

1
1+γ , (6.5)

which completes the proof of Lemma 5. 2

Acknowledgements.

This work was �nancial supported in part by Akhiezer Fund.
The author thank V.I. Korobov whose critical revision of the paper allows to
improve it essentially.
The author is very grateful to V.A. Gorkavyy and V.A. Rybalko for useful
discussions and valuable comments.

REFERENCES

1. Bandle C., Stakgold I. The formation of the dead core in parabolic reaction-
di�usion problems // Trans. Amer. Math. Soc., 1984. � V. 286, 1. � P. 275�293.

2. Chen Xu-Yan, Matano H., Mimura M. Finite-point extinction and continuity of
interfaces in a nonlinear di�usion equation with strong absorption // J. Reine
Angew. Math., 1995. � V. 459, 1. � P. 1�36.

3. Friedman A., Herrero M.A. Extinction properties of semilinear heat equations
with strong absorption // J. Math. Anal. Appl., 1987. � V. 124, 2. � P. 530�546.

4. Knerr B.F. The behavior of the support of solutions of the equation of nonlinear
heat conduction with absorption in one dimension // Trans. Amer. Math. Soc.,
1979. � V. 249, 2. � P. 409�424.

5. Payne L.E., Improperly Posed Problems in Partial Di�erential Equations. �
SIAM, Philadelphia, 1975. � 62 p.

6. Straughan B. Instability, Nonexistence and Weighted Energy Methods in Fluid
Dynamics and Related Theories. � Pitman, London, 1982. � 169 p.



Âiñíèê ÕÍÓ, Ñåð."Ìàòåìàòèêà, ïðèêëàäíà ìàòåìàòèêà i ìåõàíiêà�, òîì 84 (2016) 45

7. Diaz J., Veron L. Local vanishing properties of solutions of elliptic and
parabolic quasilinear equations. // Trans. Amer. Math. Soc., 1985. � 290:2. �
P. 787�814.

8. Antontsev S., Diaz J., Shmarev S.I. The Support Shrinking Properties for
Solutions of Quasilinear Parabolic Equations with Strong Absorption Terms.
// Annales de la Faculte des Sciences de Toulouse Math., 1995. � 6:4. � P. 5�30.

9. Cwickel M. Weak type estimates for singular value and the number of bound
states of Schr�odinger operator // Ann. Math., 1977. � 106. � P. 93�100.

10. Kondratiev V.A., V�eron L. Asymptotic behaviour of solutions of some
nonlinear parabolic or elliptic equations. // Asymptotic Analysis., 1997. � 14.
� P. 117-156.

11. Belaud Y. Hel�er B., V�eron L. Long-time vanishing properties of solutions of
sublinear parabolic equations and semi-classical limit of Schrödinger operator
// Ann. Inst. Henri Poincarr�e Anal. nonlinear, 2001. � V. 1, 18. � P. 43�68.

12. Hel�er B. Semi-classical analysis for the Schr�odinger operator and
applications. � Lecture Notes in Math. 1336, Springer-Verlag, 1988. � 107 p.

13. Belaud Y., Shishkov A. Long-time extinction of solutions of some semilinear
parabolic equations // J. Di�er. Equat., 2007. � 238. � P. 64�86.

14. Belaud Y. Asymptotic estimates for a variational problem involving a
quasilinear operator in the semi-classical limit // Annals of global analysis
and geometry, 2004. � 26. � P. 271 � 313.

15. Alt H.W., Luckhaus S. Quasilinear elliptic-parabolic di�erential equations //
Math. Z., 1983. � V. 183, 3. � P. 311�341.

16. Bernis F. Existence results for doubly nonlinear higher order parabolic
equations on unbounded domain // Math. Am., 1988. � V. 279, 3. � P. 373�
394.

17. Stiepanova K.V. Extinction of solutions for parabolic equations with double
nonlinearity and a degenerate absorption potential // Ukrainian Mathematical
Journal, 2014. � V. 66, 1. � P. 89�107.

18. Rosenblyum G. V. Distribution of the discrete spectrum of singular di�erential
operators // Doklady Akad. Nauk USSR, 1972. � 202. � P. 1012�1015.

19. Lieb E.H., Thirring W. Inequalities for the moments of the eigenvalues of
the Schrödinger Hamiltonian and their relations to Sobolev Inequalities // In
Studies in Math. Phys., essay in honour of V. Bargmann, Princeton Univ.
Press, 1976. � P. 203�237.

Article history: Received: 27 September 2016; Final form: 28 November 2016;
Accepted: 12 December 2016.


