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Plasticity of the unit ball of ¢,
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In the recent paper by Cascales, Kadets, Orihuela and Wingler it is shown
that for every strictly convex Banach space X every non-expansive bijection
F : Bx — Bx is an isometry. We extend this result to the space ¢1, which is
not strictly convex.
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Introduction

Let E be a metric space. A map F' : E — FE is called non-expansive, if
p(F(x),F(y)) < p(x,y) for all z,y € E. The space F is called Fzpand-Coniract
plastic (or simply, an EC-space) if every non-expansive bijection from E onto
itself is an isometry. A metric space is called totally bounded, if for every € > 0
it possesses a finite e-net.
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Satz IV of [3] or Theorem 1.1 of [6] imply that every totally bounded metric
space is an EC-space, but there are also examples of EC-spaces that are not
totally bounded. According to [2, Theorem 2.6|, the unit ball of every strictly
convex Banach space is an EC-space, so in particular the closed unit ball of an
infinite-dimensional Hilbert space is an example of not totally bounded EC-space.
On the other hand, there are bounded closed convex sets in an infinite-dimensional
Hilbert space that are not EC-spaces [2, Example 2.7].

It is a challenging question whether unit balls of all Banach spaces are EC-
spaces. The question is not easy, and a possible approach to it consists in checking
what happens with Expand-Contract plasticity of unit balls in classical spaces that
are not strictly convex. The list of such spaces includes C'(K), L1(Q, %, u), ¢1, co
and many others. In this short note we do just one step in this direction. Namely,
we demonstrate the EC-plasticity of the unit ball of ¢;.

Below, the letters X, Y are used to denote Banach spaces, and we consider
only real Banach spaces. For a Banach space X we denote by Sx and Bx the
unit sphere and the closed unit ball of X respectively. For a convex set A C X
denote by ext(A) the set of extreme points of A; that is, x € ext(A) if x € A and
for every y € X \ {0} either x +y € A or x —y ¢ A. A Banach space X is called
strictly convex if all elements of Sx are extreme points of Bx, or in other words,
Sx does not contain non-trivial line segments.

Recall also, that ¢; is the space of those sequences z = (x1,x2,...) of reals
which satisfy the condition Y 7, |z,| < oo. This space is equipped with the
norm [z = 52, [znl.

We conclude the introduction by listing four known results that we will use in
our proof. The first one is a part of |2, Theorem 2.3|.

Proposition 1 Let F' : Bx — Bx be a non-expansive bijection. Then, the
following holds true.

1. F(0) =0,
2. Fﬁl(Sx) C Sx.

3. If F(x) is an extreme point of the unit ball, then F(ax) = aF(x) for all
ac(0,1).

4. If F(x) is an extreme point of Bx, then x is also an extreme point of Bx.
5. If F(x) is an extreme point of the unit ball, then F(—x) = —F(z).
We will need also the following result by P. Mankiewicz [5].

Proposition 2 If A C X and B C Y are conver with non-empty interior, then
every bijective isomelry F': A — B can be extended to a bijective affine isometry
F:X->Y.
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Taking into account that in the case of A, B being the unit balls every isometry
maps 0 to 0, this result implies that every bijective isometry F': Bx — By is the
restriction of a linear isometry from X onto Y.

Another ingredient of our proof will be the Brower invariance of domain
principle [1] (see also the excellent exposition written by Terry Tao in his blog
https://terrytao.wordpress.com/2011/06 /13 /brouwers-fixed-point-and-invariance-
of-domain-theorems-and-hilberts-fifth-problem/ of the less involved proof by
W. Kulpa [4]).

Proposition 3 Let U be an open subset of R"™ and f : U — R™ be an injective
continuous map, then f(U) is open in R™.

The next easy proposition is surely not new, but we were not able to find it
in the literature. That is why we present it here with a sketch of the proof.

Proposition 4 Let X be o finite-dimensional normed space and V be a subset of
Bx with the following two properties: V is homeomorphic to Bx and V O Sx.
Then V = Bx.

Proof. Recall, that a topological space E has the fixed-point property (FPP for
short), if every continuous map f : F — E has a fixed point. According to
Brouwer’s fixed point theorem, Bx has the FPP, so V also has the FPP. Now let
us argue “ad absurdum”. Assume that V' # Bx. Then there is a point 9 € Bx \ V.
For every point x € V counsider the semiaxis L, = {xg + tx : t € [0,400)} and
denote P(x) the point where L, intersects Sx. Then P is a continuous retraction
from V onto Sx, so Sx is a retract of V. This leads to contradiction, because a
retract of a set with FPP must also have the FPP, but Sx does not have the FPP
(just consider the map z — —x).

The main result
Theorem 1 The unit ball of €1 is an EC-space.

Proof. Denote U the closed unit ball of ¢, and let e, = (0;p)ien, n = 1,2,...
be the elements of the canonic basis of ¢; (here, as usual, d; , = 0 for n # ¢ and
Onn = 1). It is well-known and easy to check that ext(U) = {£e,,i = 1,2,...}.
Now consider a non-expansive bijection F': U — U. Our goal is to demonstrate
that F' is an isometry.

Denote g, = F~'e,. According to item (4) of Proposition 1 g, is an extreme
point of U, so it is of the form One.,(,), On = £1. Moreover, by item (5) of the
same Proposition 1, m(ny) # m(ng) for ny # ng. This means that the sequence
(gn) is equivalent to the canonic basis of /1 in the following usual sense: for every

(ak) € 51
Zangn = Z ’an’

neN neN
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One more notation: for every N € N and Xy = lin{gy }x<ny denote Uy and 0Uy
the unit ball and the unit sphere of X respectively, i.e.

Uy = Zangn:2|an|§1 ,O0UN = Zangnzzmn\:l ,

n<N n<N n<N n<N

and analogously for Yy = lin{ey}y<ny denote Viy and 0V the unit ball and the
unit sphere of Yy respectively.
Claim. For every N € N and every collection {ar}r<n of reals with

12 nen angnl <1

F Z angn | = Z Ap -

n<N n<N

Proof of the Claim. We will use the induction in N. If N = 1, the Claim
follows from items (3) and (5) of Proposition 1. Now assume the validity of the
Claim for N — 1, and let us prove it for N. At first, let us prove that

F(UN) C Vn. (1)

To this end, consider x € Up. If = is of the form agy the statement follows
from Proposition 1. So we must consider z = SN a;gi, S |ai| < 1 with
SV M au| # 0. Denote the expansion of F(z) by F(z) = Y.°, yie;. For the

element N1
i Qigi
1= "&SN-1
Zi:1 |cvi
by the induction hypothesis

N-1
F(xl) e Zi:l @iCi

N—1 )
Zi:l |cvi

so we may write the following inequalities:

2= [P ,

_oN ’ <
lan]

N
F(zy) — Z yie;
i—1

N
anN
Z%ei - 7|a ‘eN
i—1 N
oo

— [P - F@)l + |Fe) = x| =2 3 Jud

] i=N+1
aN an
< 1P@) ~ @+ [P - P (2w )| < o =+ [l = 22000
‘aN’ ‘OJN‘
N-1 o N-1 N
J N
= o — N-1 +|OzN|+Z!ozj—l—aN—‘
j=1 > izt ol j=1 lan]

1
T« N-1
Zi:l |

)i oo )2
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This means that all the inequalities in between are in fact equalities, so in
particular Y 7%\ |yl =0, ie. F(x) = SN yiei € Viy and (1) is proved.
Now, let us demonstrate that

F(UN) D OVy. (2)

Assume contrary, that there is a y € OV \ F(Uy). Denote z = F~!(y). Then,
llz|| = 1 (by (2) of Proposition 1) and = ¢ Uy. For every t € [0, 1] consider F(tx).
Let F(tx) = Y, cnbnen be the corresponding expansion. Then,

=10 —ta| + [tz — =[] = |0 = F(tx)|| + || F(tz) -y

=2 [bal + || D bnenl|[+ [y = D buen|[ =2 [bal +1,

n>N n<N n<N n>N

S0 Y ,sn |bn| = 0. This means that F(tx) € Vy for every ¢t € [0,1]. On the
other hand, F(Uy) contains a relative neighborhood of 0 in Vi (here we use that
F(0) = 0 and Proposition 3), so the continuous curve {F(tx) : t € [0,1]} in Vi
which connects 0 and y has a non-trivial intersection with F'(Uy). This implies
that there is a t € (0, 1) such that F(tz) € F(Uy). Since tz ¢ Uy this contradicts
the injectivity of F'. Inclusion (2) is proved.

Now, inclusions (1) and (2) together with Proposition 4 imply F(Uy) = V.
Remark, that Uy is isometric to Viy and, by finite dimensionality, Uy and Vjy are
compacts. So, Uy and Vv can be considered as two copies of one the same compact
metric space, and Theorem 1.1 of [6] (which we mentioned in the beginning of
the Introduction) implies that every bijective non-expansive map from Uy onto
Vi is an isometry. In particular, F' maps Uy onto Vi isometrically. Finally, the
application of Proposition 2 gives us that the restriction of F' to Uy extends to a
linear map from Xy to Yy, which completes the proof of the Claim.

The remaining part of the proof is easy. The continuity of F' and the claim
imply that for every © = (zx)keny € U

[o¢] o0
F (Z xngn> = Z Tp€n = .
n=1 n=1

Consequently, ||z| = ZTOLO:1 |zn| = ”220:1 Tngnll = HF_I(fE)H
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