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Chica, Kadets, Martin and Soloviova demonstrated recently that the Bishop-
Phelps-Bollobds modulus <I>§< of a Banach spaces X can be estimated
from above through the parameter of uniform non-squareness «(X):

P (e) < V2e4/1—1a(X). In this short note we demonstrate that the
right-hand side in the above theorem cannot be substituted by anything

smaller than v/2¢ /1 — a(X).

Keywords: Bishop-Phelps theorem; uniformly non-square spaces.

ConositoBa M. B. Moayai Bimona-®esica-Bosobaria B piBHOMIpHO
HeKBaJpaTHUX GaHaxoBux mpocripax. Yika, Kagenb, Maprin, ConosiioBa
HEIOJABHO JIOBEH, IO MOayJsb birmmona-®ennca-Bomgobaria <I>§( 6aHaAXOBOI'O
mpoctopa X Moxe OyTW OIiHEHWU 3BEpXy dUepe3 MMapaMerp piBHOMipHOI

nekaaparnocti a(X): ®5(e) < v2e4/1— 2a(X). ¥ uiii koporkiii crarri
MU TIOKAKEMO, MO NPaBa YaCTUHA OIiHKM HE MOXkKe OyTH 3MiHEHa Ha [IOCh

Menbie, Hix /2 /1 — a(X).
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Introduction
In this paper letter X stands for a real Banach space. A functional z* € X*
attains its norm, if there is an x € Sx with z*(z) = ||z*||. The classical Bishop-

Phelps theorem states that the set of norm attaining functionals on a Banach
space is norm dense in the dual space (|1], see also [6, Chapter 1]|). A refinement
of this theorem, nowadays known as the Bishop-Phelps-Bollobds theorem [2], was
proved by B. Bollobds and allows to approximate at the same time a functional
and a vector in which it almost attains the norm. Very recently, the following
quantity have been introduced [4] which measure, for a given Banach space, what
is the best possible Bishop-Phelps-Bollobds theorem in this space. Denote by Sx
and By the unit sphere and the closed unit ball of X respectively. We will also
use the notation

(X)) :={(z,2") € X x X* : [|z| = ||z*|| = 2*(z) = 1}.

Definition 1 (Bishop-Phelps-Bollobds modulus, [4])

Let X be a real Banach space. The spherical Bishop-Phelps-Bollobds modulus of
the space X is the function ®3 : (0,2) — RT such that given ¢ € (0,2), ®%(¢)
is the infimum of those 6 > 0 satisfying that for every (z,x*) € Sx X Sx» with
z*(x) > 1 —¢, there is (y,y*) € II(X) with ||z —y|| < 0 and ||z* —y*|| <.

It is known (see, for example, [4, Theorem 2.1|) that for every Banach space
X and every e € (0,2) one has ®3.(¢) < v/2e. This estimate is sharp for the

two-dimensional real space 6%2) (see [2] or [4, Example 2.5]).

Uniformly non-square spaces were introduced by James [7| as those spaces
whose two-dimensional subspaces are uniformly separated from £§2). The main
result of [7] — the reflexivity of uniformly non-square spaces — was the origin of
the theory of superreflexive spaces.

Recall that a Banach space X is uniformly non-square if and only if there is

o > 0 such that )
Sz +yl+lz—yl) <2-a

for all z,y € Bx. The parameter of uniform non-squareness of X, which we denote
a(X), is the best possible value of « in the above inequality. In other words,

a():=2 swp {3lle+ul+la -}

z,yEBx

With this notation X is uniformly non-square if and only if a(X) > 0. In a
uniformly non-square space the estimate <I>§((5) < v/2¢ can be improved.

Theorem 1 (Theorem 3.3 of [5]) Let X be a Banach space with o(X) > 0.
Then,
1

DX (e) < V2e 1—§a(X) for O<5<%—éa(X).
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Although we don’t know whether the above estimate of ®3-(g) through a(X)
is sharp, we are able to demonstrate (and this is the goal of this short article)
that this result cannot be improved too much. Namely, we demonstrate that
the unknown optimal estimate of ®%(g) through «(X) cannot be better than

V2ey/1—a(X).
The main result

We will make a use of “hexagonal spaces” X, introduced in [8] and the
description of II(X,) from that paper. Fix a p > % and denote X, the linear
space R? equipped with the norm

1-— 1—
(21, 22)[| = ||(561a1‘2)|’p=max{|$1— Pal, |2 — p$1|>|$1+$2|}~
In other words,
|z1 + 22|, if x120 > 0;
|(z1,z2)]| = |21 — I;p”a:g], if z129 <0 and |z1| > |zaf;

|zg — 1;/)”x1|, if z129 <0 and |z1] < |zal.

and the unit ball B, of X, is the hexagon abcdef, where a = (1,0);b = (0,1);

c=(=p,p);d=(-1,0);e = (0,~1); and f = (p, —p).
The dual space to X, is R? equipped with the polar to B, as its unit ball. So
the norm on X is given by the formula

(@1, m2)[I* = (1, z2)[l, = max{|ay], 22|, plz1 — 22},
and the unit ball B; of X7 is the hexagon a*b*c*d*e”f*, where a* = (1,1);
o (1= ). o = (1 1= o = (=1 —1): e = (=2 1)
b —( p,l),c = ( 1,p),d = (—=1,-1); e* = (p, 1),and

= ( ’_1_7/’). The corresponding spheres .S, and S; are shown on Fig. 1 and

2 respectively.

b a*

f /

e d* e*

Fig. 1: Unit sphere of X,,. Fig. 2: Unit sphere of X7.
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In the case of p = % the sphere of X, reduces to the square abde, and

consequently X5 is isometric to the spaces 852) and sz). When p > %, the
space X, is not isometric to Eg%). Let us calculate the parameter of uniform non-

squareness for X ,.

Lemma 1 Let p € [1/2,1]. Then, in the space X = X,

1
a(Xp)—l—?p. (1)

Proof. Consider ¢(z,y) = 3(||z+y| +|z—y|). Then a(X) = 2—sup{p(z,y) :
(z,y) € Bx, x Bx,}. Since ¢ : Bx, x Bx, — R is a convex function, it attains its
maximum at some extreme point of Sx, x Sx,, i.e. at a point of the form (z,y)
with x,y € {a,b,c,d,e, f}. Also, p(x,y) = ¢(y,x) = ¢(x, —y), so by symmetry
of the function and symmetry of the ball, is sufficient to check values of functions
¢ for the following two pairs (z,y): * = a,y = band z = a,y = c.

o =a=(1,0y=b=(0,1), then [lz+yl| = (L] = 2, [}z — yl| =
(1, =1)[| = 14+ 52 = 1. S0, p(a,b) =1+ 5.

Itz =a=(1,0),y = c=(—p,p), then [z+yl = (1= p.p)| = 1—p+p=1,
lz =yl = (L +p,=p)l| =1+ p+1—p=2.50, p(a,c) =144 <1+ 5.

Therefore max{yp(z,y) : (z,y) € Bx, x Bx,} = 1+ i, and consequently
a(Xy) =1- %. The lemma is proved.

The set II(X,) is the following polygon in R? x R?:
(X)) ={(a,z*) : 2* € [f*,a*]} U{(z,a") : © € [a,b]} U {(b,z*) : 2* € [a*,b*]}
U{(z,b*) :z € [b,} U{(c,z*) : x* € [b*, "]} U{(z,c") : x € [e,d]}
U{(d,z*) : * € [¢*, d*]} U {(z,d*) : x € [d,e]} U{(e,z*) : 2* € [d*, e*]}
U{(z,e*) : x € le, fIYU{(f,z*) : z* € [e*, ]} U{(x, f*) : x € [f,al},
where we use brackets like [-, -], [, [ to denote line segments in a linear space, for
example, [a,b] = {A\b+ (1 — N)a : 0 < X\ < 1}; and parenthesis (-,-) are reserved
to denote an element of a Cartesian product.

Theorem 2 For every o € [0,1/2] there is a Banach space X with o(X) = «

such that
05 (2) > v2e/1— a(X) (2)

for all 0 <e < 1.

Proof. Let us demonstrate that the space X = X, with p = m is what we are
looking for. The direct application of lemma 1 gives a(X) = «, so what remains
to show is (2).

Denote x = (1 — \/ep, \/Ep),z* = (1,1 — \/¢/p). Then, x €]a,b[, z* €]a*, f*
and z*(x) = 1 —e. In order to demonstrate (2) it is sufficient to prove the absence
of such a pair (y,y*) € II(X) that max{||z — y||, |lz* — v*|} < V2ev1 —a.
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Denote r = v/2e4/1 — a and consider the set U of those y € Sx that ||z —y|| <
r. U is the intersection of Sx with the open ball of radius r centered in z (U is
the bold line in Fig. 3). The radius of the ball equals to the distance from x to a:

o= all = (3. V&)l = Vep+ L en = V/ep = VEVT=a =,

which explains the picture for small r. Also for bigger values of r the set U can
contain points b and ¢, but it never contains any point of [d, €], [e, f] and [f, a].
Observe that the open ball of radius 1/p centered in b contains the set U, as if
h € U, wehave [[b = h| < [|b — || + [l = All < [b — 2| + |z — al| = [b - al| =
1/p. Therefore it is sufficient to check that the distance from b to every point of
[d, €], e, f] and [f,a] is no less than 1/p. Indeed, if s = (—w,w — 1) is a point of
[d,e] (0 <w < 1), then

[b—sll =[[(w,2 —w)| =w+2-w=22>1/p.
Ifs:(w,Ppr—l) is a point of [e, f], 0 < w < p, and so

1-— 1-— 1-—
Hb—s”:\|(—w,1—pr+1)H:pr+2—7pw:221/p.

If s is a point of [f,a], p < w < 1, we shall consider cases p < 1 and p = 1

separately. For p < 1 we have s = (w, —lfpp(l —w)), then

p p p p
b—s|=|(-w,1+-—"—(1- = wr1+-L L w>2>1/p.
16— s[| = [|(—w, +1_p( w))|| LR sl s b /p

And for p =1 we have s = (1, —w), 0 < w < 1. Hence
16 = sl = (=11 + w)| = maz{1,1 +w} > 1=1/p.

So, U Cla,bjU[b,c]U]e,d].

/|

e d* e*

Fig. 3: The set U. Fig. 4: The set V.
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Consider also the set V' of those y* € Sx« that ||z* — y*|| < r. V is the
intersection of Sx+ with the open ball of radius r centered in z* (the bold line in
Fig. 4). The radius of the ball equals to the distance from z* to a*: [|z* — a*|| =
10, v/ /o)l = v/2lp = 7.

What remains to show is that (y,y*) ¢ II(X) for every y € U and every
y* € V. The latter fact follows immediately form the above descriptions of the
sets I1(X,) and U together with the fact that V' C]d*,e*] U [e*, f* ] U [f*,a"[.
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The problem of the electromagnetic field an open spiral conductive sphere
is analyzing. The method of regularization of operator tasks is applied. The
integral equations with a weak singularity in the kernel is used. The infinite
system of algebraic equations of type II with a compact operator in f5 is
received. Some properties of electromagnetic fields are studied.

Keywords: spiral conductive sphere, vertical dipole, compact operator.

Pesynenko B.O. Ilojsie BepTUKAJIBHOIO €JEKTPUYHOTO UTIOJS, SKUHN
po3MileHuii HaJ CHIPAJbHO IIPOBIJHOIO HE3aMKHEHOI0 cdeporo.
HocmimKkyerbcss 3ajada MPO eIeKTPOMArHITHE IOJe CIipaabHO MTPOBITHOL
He3aMKHEeHOT cdepu. 3aCTOCOBAHO METOJ PEeryaspusaliil omeparopa 3aadi,
BMKOPHCTOBAHO PO3B’sI3KM IHTErpajibHUX PIBHAHHB i3 CJAA0KOI0 OCOOJIHBICTIO
y aapi. OmepkaHO HECKiHYEHHY cucTeMy ajareOpaivuaux pisusHb I pomy 3
KOMITAKTHUM OTiepaTopoM y fo. Busueni meski BIacTUBOCTI €JI€KTPOMATHITHUX
TTOJTiB.

Kamowosi caosa: cipanbao nposigHa cdepa, BEpTUKATBHAN IATOIb, KOMIAKT-
HUI oneparop.

Pesynernko B.A. Ilosie BepTHUKaJIBHOTO 3JEKTPUYECKOTO JUIIOJS, pa3-
MEIEHHOT0 HaJ CHUPaJIbHO IIPOBOAAIIEil He3zaMKHYTOI cdepoii.
Uccnenyercs 3amata 00 371€KTPOMATHUTHOM T0OJ€ CIUPATIHHO MPOBOJISINEN
He3aMKHYTON cdepbl. [IpuMeHeHbl METOI perysspu3alnuy OnepaTopa 3a1aduu,
WHTErpajbHbIE YPaBHEHHS €O CJIaboi OcobeHHOCThI0 B sape. llomydena
OeckomeuHasi cucrema anrebpamdeckmx ypapuenmit II poma ¢ KoOMIaKTHBIM
oneparopom B fo. VI3ydeHbl HEKOTOPbIE CBOWCTBA 3JIEKTPOMATHUTHBIX HOJIEH.
Karouesvie caosa: crimpasbHO TPOBOIsIas cdepa, BEPTUKATILHBIN U0,
KOMITAKTHBINA ONepaTop.
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1. Introduction

The methods of regularization of matrix and integral operators of applied
problems occupy a prominent place among the numerical-analytical methods [1],
[2]. The variant of methods [1], |2]| is used for analysis of the electrodynamic
properties of the unclosed spiral conductive spherical surface. The spiral antennas
and devices have small size and the lightweight. They are power saving ones. They
allow to control the polarization of the radiation fields. The spiral antennas have
been successfully used on mobile objects to communicate at short, medium and at
very long distances [3]-|5]. We note that there are many experimental papers on
this subject. The number of theoretical works is comparably small. The purpose of
our work is the construction of a numerical analytical algorithm for study of fields
properties of the spiral conductive unclosed sphere [1], [2]. The spiral conductive
unclosed sphere is irradiated by the vertical electric dipole field. The dipole is
placed above the sphere with a circular aperture on its axis of symmetry. We
apply the method of regularization of problem’s operator. We use the solutions
of integral equations with a weak singularity in the kernels. The main part of the
matrix operator is extracted and inverted. The infinite linear algebraic system of
second kind with compact operator in Hilbert space I is obtained. The limit cases
of formulation of the problem and properties of solutions are considered.

2. Formulation of the problem

The origin of Cartesian and spherical systems of coordinates are placed in
the geometrical center of the sphere of radius » = a. Let us cut the sphere by
a horizontal plane into two parts. Consider its upper part as an unclosed sphere
with a circular aperture. Let the polar angle 8 of the edge of the aperture be equal
fp. The polar angle 6 on the aperture is changing from 6y to w. Let the vertical
electrical dipole be placed on the axis of symmetry of the unclosed sphere on the
axis OZ at the point z = b > a. We assume that the surface of an unclosed sphere
is infinitely thin and spiral conductive. Let § will be the angle between the lines
of conductivity of the electric current on the unclosed sphere and the lines of the
meridians on the sphere. The sphere conducts the current in selected directions
only. We note that the line of the conductivity on the sphere may be represented
as follows: x = sin(n)cos(14n), y = sin(n)sin(14n), z = 1 + cos(n), where 7 is
a dimensionless parameter, which varies in bands [0,7/2] (fig.1).The dipole field
E ©), H© meets an unclosed sphere and creates secondary electromagnetic fields:
E(l), H® in the area 0 < 7 < a and E(Q), H®in the area r > a. By definition,
the total field in the area 0 < r < a is equal to E(l), HD According to the
superposition principle of electromagnetic fields, the total field in the area r > a
is the sum of fields E© + E® and H® + H®. The time dependence of the
fields is taken as exp(—iwt), where w is the angular frequency, w = 27/A, A is a
wavelength of the dipole field.

The total electromagnetic fields outside of the unclosed sphere satisfy the
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e

Fig.1: The line of spiral conductivity of the electric current.

following conditions: 1) the Maxwell and material equations:
rot E =ikH, rotH = —ikE, divD = 05 div B = 0, (1)
D=¢E, B=uH, J=0E;
where k = w\/@cfl, €, p and o are the dielectric permittivity, the magnetic
permeability and the conductivity of the medium, p is the charge density, c is the

speed of light in vacuum; 2) the energy boundedness in any restricted volume A
in R

/ (5\E|2 + u!ﬁ|2) dx dydz < oo, (2)
A

where the volume A may contain the edge of the unclosed sphere; 3) the condition
of fields radiation on infinity:

NG
1imr[g — kU] =0,r — oo,
r

where U is any component Eor H.

3. Boundary conditions

In addition to conditions 1)-3), the total fields satisfy the boundary conditions.
We write the conditions for the field’s components

—

E(E,,Ey,E,), H(H,,Hy, H,). (3)

in the spherical coordinate system.
B1) the field’s components on the surface of the unclosed sphere {r = a,0 <
0 < 6y, ¢ € [0,27|} satisfy the conditions of the spiral conductivity:
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(HY —HD) + (HD + HO — HW)tg5 =0,

(0) + E( ) Eél)a En,(o2) — E«,(01)7

B — BV tg8=0; (4)

B2) the total fields are continuous on the aperture of the unclosed sphere
{r=a,00 <0 <maeoel0,2n]}:

FO 4 BO Z FO @ 4 GO _ fO), (5)

The total fields satisfy the requirement for singularity in the dipole placement
point. The problem (1) - (5) has a unique solution [8].

To solve the problem (1) - (5), we use the methods of regularization of the
auxiliary integral and matrix operators. First, using the Debye u electric and v
magnetic scalar potentials, the components of the field (3) are written. The fields
components are uniquely expressed by the Debye potentials. The scalar potentials
u, v satisfy the Helmholtz equation, which follows from the Maxwell equations (1),
in particular, Au + k?u = 0. We write the Helmholtz equation in the spherical
coordinate system and separate the variables in the equation. The potentials are
represented by the Fourier series. We note that the magnetic potential of the
vertical electric dipole, placed on the axis OZ, is equal to zero: v(® = 0. The
electric potential of the dipole is present by the series of eigenfunctions of the
auxiliary the Sturm-Liouville problem as follows

> Po(cos ) [y (kr)én(kb), 7 <b,
nZlF ErE { in(kb)en(kr), 7> b, L) =2n+L o (6)
We note that the modulus of dipole moment f’, which is directed along the
axis OZ is equal to unity in the expression (6). We also take into account that
the dipole is placed in the upper half space on the axis OZ above the unclosed
sphere. In (6) 1, (x), &, (x) are spherical Bessel and Hankel functions in the Debye’s
notation of the first and 3-th kinds, respectively, of the n-th order of argument «;
P, (cos @) are Legendre polynomials of the first kind of the n-th power and zero
order of the argument cos . We look for the secondary potentials (7), (8) in the
form of series (6):

(cos 6?) Apthn(kr), r<a,
y(l) } ZF { Bpén(kr), r>a, (M)
u® > Py(cos®) [ Cpipn(kr), r<a,
v(2) } - nZ:l F(n) kr { D&, (kr), r> a. (8)

Here in (7), (8) we take into account the occurrence of magnetic potentials in the
secondary fields, which are scattered by the spiral conductive unclosed sphere. The
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unknown coefficients A,,, By, Cy,, Dy, of the series (7) and (8) belong to the Hilbert
space (see (2)) with certain weights, which are different for different coefficients.

4. The paired functional equations containing
the associated Legendre functions

Using the boundary conditions (4), (5), we get the three linear equations of
connection for four unknown coefficients A,, B,, Cn, D, for each n = 1,2,3,....
We used here the orthogonality of the associated Legendre functions of the first
kind of the first order with the weight sinf on the segment [0, w]. The coefficients
Ay, B, and D,, are expressed in terms of the coefficients C,, by the three equations
of connection. To find coefficients C),, we deduce the paired functional equations.
We use all the boundary conditions (4), (5) for all the components of the unknown
fields EO, HV E@ H® from (3). As a result, we obtain the system of paired
functional equations, which allows to find the coefficients (8) of potential u(?):

> CuF(n) (1]%) Pllcos®) =0, Gy <0<, (9)
n=1 n

> Gy s {(t98)nlka)6uha) + U1 (k) (o)} Ph{cos) =
n=1 n

—(kb)~? iF(n)%(ka)ﬁn(kb)wn(kb)Pﬁ(COS 0), 0<0<6, (10)
n=1

where the prime of the functions ¢, (-), £, (+) means the differentiation with respect
to the argument. To find all coefficients of the potential (7), (8) there is only one
paired system of functional equations. In contrast to [11], the questions of the
division of polarization fields and search for additional constants of integration
do not arise. The system of paired functional equations (9)-(10) is of the first
kind with complicated kernels, which involve various spherical functions. The
multipliers of the unknown coefficients C, in (9) and (10) are different and have
different rates of decrease as n — co. Even taking into account the orthogonality of
the associated Legendre functions with the weight sinf in Ly (0, ), such systems
can not be solved analytically. The systems of this type appear in many problems
of fields diffraction on open structures. There are many direct numerical methods
developed for their approximate solution. These methods are more general than
the analytical ones. However, such methods do not allow to evaluate the accuracy
of the solutions. This fact is important in the analysis, e.g., resonance oscillations
of the investigated fields. In addition, the direct numerical methods also require
the use of considerable computing resources. We apply analytical method for
the regularization of the system (9), (10) [7,9-15,19,20]. As a result, we obtain
the infinite system of linear algebraic equations of the second kind, which is
successfully solved numerically and analytically.
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5. The infinite system of linear algebraic equations of the second kind

We transform the system (9), (10) into an equivalent system of functional
equations, which include the trigonometric functions instead of Legendre
functions. For this purpose we use the convergence of the series (10) in Lo (0, )
and integrate the equation (10) term by term. Here we use the equality
Pl(cosf) = —[Py(cos)]’. Here the constant T of integration arises. We find
the constant T below in (16). The Meller-Dirichlet integral representation for
the Legendre polynomials (11)

P,(cost) = 1\[/ (cos ¢ — cos ) 790 cos(n + 0.5)p d¢ (11)

is substituted into the integrated equation (10). Then the integral representation
of the type Meller - Dirichlet for the associated Legendre functions (12)

1n (n+1)

1 . .
P, (cos0)=[rsinbd]~ g1

\f/ (cos — cos ¢) %5 cos(n+0.5)¢ - sin p dop (12)
is substituted into equation (9). Using the convergence of the series in Ly(0, ), the
order of integration and summation in both equations (9) and (10) changes. In this
case we have two integral equations of the first kind with the weak singularities
in the kernels. The singularities are due to the presence of radicals in (11) and
(12). So, we get from (10) the integral equation foe(cos ¢ —cos )75 f1(p) dep = 0,
where

f1(8) = 3202 F(n) {Cul), (ka)] = V[(tg B)2¢n(ka)én(ka) + 1, (ka)E), (ka)]—

P (ka)&n (kb) o (kb)/(kb)2} - cos(n + 0.5)¢ — T© cos(0.5) .

The solution of the integral equation is found in L9 (0, 7) by using the composition
with the kernel of the equation [6, 7, 15]. We receive the unique trivial solution:
f1(¢) =0,9 € (OaGO)

Similarly, from the equation (9), we obtain the integral equation [, (cos6 —
cos @) 90 fo(¢) dp = 0, where fo(¢) is represented by the trigonometric Fourier
series. That integral equation also has the unique trivial solution in Ly(0,7) :
fa(@) = 0,0 € (0p, 7). We receive a new system of functional equations of the
first kind. Next, we transform the system of the first kind into the system of the
second kind.

For this purpose we apply the methods [1,2,7,9-15,19,20] and use the
properties of the Bessel and the Hankel functions [21]. Then we do some linear
transformations of the system of functional equations and find the main part of
the system. Next, we relabel the coefficients C, to the new coefficients y,, (13)
and introduce the small parameters ¢, (14):

yn = CuF(n)n(n + 1) [} (ka)(2n+ 1)] ", (13)
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sn:1+ika(n2<”“{wn (ha)€, (ka) + (tg B)*Yn(ka)en(ka)}.  (14)

Now we inverse analytically the main part of the functional equations of the
second kind. For this, the methods [1,2,7,9-15, 19, 20] and the method of discrete
Fourier transform are used. As a result, we obtain the infinite system of linear
algebraic equations of the second kind:

_ ika
Yo = (1) Z YmEmn,m(0o) — fT( ) Gn.0(60)—

(15)
o Z F (1), (12) € (k0) g m (6)-

Also, we find the integration constant 7 for the equation (9) and substitute
it in (14) as

0 _ © S c ikal (ka m) - —2y @m,0(bo)
T kamzlym m {1+ ika ) (ka) &, (kb)F(m) - (kb) 2} @y (19
where 0
anm(00) = 2/0 [cos(n + 0.5)¢][cos(m + 0.5)¢|d¢. (17)

Consider the properties of the resulting system (15). For any values ka and
B € [0,%) the small parameter (14) vanishes comparably quickly, proportionally
ton~2, when n — oo. The auxiliary values g, m(6p) in (17) are uniformly bounded
by 27 for any n,m > 1 and any 6y € [0, 7]. In addition, the values gy m(6o) for
fixed n = ng vanish proportionally to n~!, when m — oo. Similarly, the values
n.m (00) for fixed m = my vanish, proportionally to n !, when n — co. The matrix
elements {Gy,m}po,—1 of the system Y = GY + @ (15) for fixed n = ng vanish
when m — oo and they vanish for fixed m = mg, when n — oo . The eigenvalues
of the system’s matrix operator differ from the unity. The right column of the
system (15) belongs to lp. The system (15) has the compact matrix operator in
lo and a unique solution in ls. It is solved numerically for arbitrary geometric
and frequencies parameters of the problem. The system is solved analytically, in
particular, by the method of successive approximations for the large apertures in
the sphere (0 < 6y < 1). This follows from the fact that the norm in Iy of the
matrix G of the system (15) is proportional to 6y for small 6y. This method can
be applied successfully for small apertures in the sphere (0 < m — 6y < 1) after
simple linear transformations of the system (15).

6. Conclusions

1. The system (15) is constructed for the study of electromagnetic fields in
the case of placing of an electrical dipole in the point z = b > a on the axis OZ.
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The system (15) can be modified for the case of the dipole placed in the point
z = —b on the axis OZ. For this it is necessary to relabel the coefficients F}, in
(6)-(8) as follows: FY = (=1)" T LF(n),n > 1.

2. Introducing the new coefficients yn1 = y,n"2,n > 1, instead of the coefficients
yn (13), the speed of convergence of the analytical and numerical methods for
solving the system (15) can be increased.

3. The polarization of the electromagnetic field of structure varies non monotoni-
cally from a linear to elliptical and almost circular with a change of the angle 5 of
the spiral conductivity of the sphere and with an increase of the angle 6y between
zero and 7.

4. The reduced resonant frequencies Xpm,n,m > 1 of the structure for small

01 = 7™ — 0y < 1 and small B differ from the ones of the closed sphere Xﬁ?,ln on

the coefficient, which is proportional to 01: xnm = X7(~82n + O(61), when 6; — 0
[10,16-20].

5. The sphere disappears completely when 6y — 0 and it turns into a closed spiral
conductive sphere when 69 — 7. The unclosed sphere becomes almost perfectly
conductive, if 8 decreases from /2 to zero. The electromagnetic field penetrates
almost completely through the spiral conductive sphere when 5 — 7/2.

6. The constructed numerical-analytical algorithm can be generalized, for
example, to calculate the electromagnetic fields of the horizontal dipole in the
presence of a spiral conductive unclosed sphere.
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Introduction

Magnetic fluids (MFs) are widely used in modern acoustical devices in order
to increase their capacity, selectivity of certain sound frequencies and to increase
their operational resource |1]. There are possibilities to use ferrofluids as converters
of acoustic oscillations [2], a study of the connection between acoustic properties of
(MFs) and their structure are of the grate interest for physico-chemistry of disperse
systems in order to obtain the information about the stability, reconstruction
times of microstructure and irreversible phenomena in the process of structure
formation [3].The known results of ferrofluid acoustics are reduced to the study
of the influence of magnetic field on the propagation velocity and absorption
of ultrasonic vibrations [4]. In this paper we investigate the possibility of new
excitation mechanisms of acoustic vibrations in (MFs) during the loss of stability
of homogeneous fluid stationary states in oscillating magnetic field. This paper
continues the study, initiated in [5], and earlier studies of the stability of ferrofluid
free surface in oscillating magnetic and gravitational fields |6, 7].

1. Basic equations

Magnetizable medium and electromagnetic field form closed thermodynamic
system. Therefore, dynamic equations of magnetizable medium take the form of
conservation laws [8]:

1. Mass conservation

g’: + divpv = 0 (1)
2. Momentum conservation
35;& = _(g)?Uk(PUivk — Pik) (2)
3. Energy conservation
8825 <pu + pi) = —divJ, (3)
4. Entropy balance equation
P 5= —divJ, + 0. (4)

Here and below the following notation are introduced as: p is the density of
medium, U is the velocity, {p;x} is the Cauchy symmetric stress tensor; u, s are
the density of the internal energy and the entropy; J—;, J, are flux density vectors
of the energy and the entropy, oy is internal entropy production, div = V- 0,
rot =V x ().

Equations (1)-(4) are supplemented by equations of quasi-stationary electro-
dynamics of non-conductive medium:

—

B L. L .
— = —crotE, B=H +4nM. (5)

divB = 0, rotH = 0,
ot
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In equations (5) displacement currents are neglected, which is equivalently to the
basic ferrohydrodynamics assumption about the same order of the characteristic
frequency and size of changes of electromagnetic and hydrodynamic quantities.

Accepting the hypothesis of local equilibrium, the medium is concretized by
the Gibbs identity in the form

1 H (B
du =Tds — pd— + —d () . (6)
p o Am \p

Here T is the temperature, p is the pressure, H,E are strength of magnetic and
electric fields, Bis magnetic induction, M is the magnetization.

It should be noted that implementation of equation (6) does not depend on
the way of magnetization of the medium (isotropic or anisotropic) [9].

Using methods of non-equilibrium thermodynamics [8|, expressions for
unknown flows in equations (1)-(4) are obtained

Dik = pézk’ + k + Tik;
2 S T GH) B,
Jok = pon(u+ B+ %) + £ B, Hlx — T —viry 4 gy (7)

Jo=psti+4; o5 =t — GVT).

Where {7;;} is the tensor of viscous stresses, ¢ is the vector of heat flux density,

E*=F + 17, B] is the electric field strength in the proper reference frame.
Satisfying the second law of thermodynamics, i.e. inequality o5 > 0, in the

linear approximation of the Onsager theory, constitutive equations are obtained

7= —kVT, T =20 + (s — 37)Veedit
(8)

k20, 120, ¢=0,

where k,7,¢ are coefficients of conductivity, shear and bulk viscosities; {v;} is
the strain rate tensor.

Equations (1)-(5) should be supplemented by equations of the thermodynamic
state. To obtain them, the thermodynamic potential f is introduced as

BH
—u—Ts— . 9
fu-Ts- 40 )
From the Gibbs equation (6) follows
BdH

df = —sdT + Ldp - .
p dmp

Therefore

of
SZ_(aiT)pJ;ﬁ p:p2(aip)Tﬁ; B_4ﬂ-p(aH)pT7
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thus . .
s=s(p,T,H); p=pp,T,H); B=DB(p,T H)

is the most common form of equations of the thermodynamic state. The final
equation determines the magnetization law of the medium.
For isotropic magnetizable medium equations of state have following form:

§=Mﬁ;u=u(p,£ﬂ);

f=1pT)~ 4 [ wp, T, H)HdH;

=BT+ 5 = 0(p,T) + 5

= ﬁf[u—p(g’,ﬁ)T,H]HdH; (10)

Here ;1 is a magnetic permeability of the medium; the expression fy := 0f/0¢y
denotes the corresponding partial derivative, index “ 0 7 at the top marked
thermodynamic functions of the medium in the absence of the field. These
functions, which assumed known, satisfy the Gibbs equation in the absence of
the field

du’ = Tds® — pod;.

Equations (1)-(5), (7)-(10) form a closed system of equations of the medium
dynamics with the equilibrium magnetization and written as [11],[15]:

% + pdivt = 0,
pll = —Vp+ MVH +nAT+ (s + in) Vdiv 7,
pT% = KAT + 2nvipvik (11)
divB=0, rotH=0, B=upH, w=ulp,T,H),

p=pp,T) +1, s=5p,T)+ s .

By virtue of (6), instead of the entropy equation in this system can be used
the energy equation in the form

|

2 2
t(pu+p”7) :_% {pvk (u—i—%—i—%—

Q

(12)

BH = =
—(4@)) + 4= [EXHL—R% —vink] .
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2. Effective nonmagnetic medium,
corresponding to magnetizable medium

One-dimensional unsteady motion of a magnetizable medium along z axis is
considered. Then v, = v,v, = 0,v, = 0 and besides

—

U:U(:Eat)a p:p(:z,‘,t), T:T($,t), ﬁ:H($,t)
From equations of electrodynamics (5) follows
By = B,(t), H,=Hy(t), H,=H.(t).

Denote
Bx(t) = Xl(t); Hy(t) = XZ(t)ﬂ Hz(t) = XS(t)'

Functions x;(t) are determined by boundary conditions.
Equations of motion (2) are reduced to the form:

op 0
LY =0
ot * oz ="
ov v 1 Jp. 4 0%v
v _ ! =) 2 13
8t+vaaz p Ox + <C+377) 0z? (13)
ds o0’T ov\?
y S, VY )
o = v +20(5;)
Taking into account that
— — — — — 1 e d é
div(E x H) = HrotE — ErotH = —fHa—
c Ot
the energy equation (12) is written as
0 n v? 0 (e + De n 112) oT .
u — | =—=|pv(te + —+ =) — K —vT .
(%Pe P2 (%P e P 5 Or 11 pq

Here the following notations are introduced:

Pe=p— X1 .
e 471_”7
I
Ue = u 47Tp(><§ +x3); (14)
_ 1 d 2 pod 2 2
=g X gy 7 X2+ X3)-

Thus, equations of one-dimensional motion of magnetizable medium are reduced

to equations of one-dimensional gas dynamics with special equations of state.
Equations have this form regardless from the way of magnetization (isotropic

or anisotropic). It affects only on the equation of state, i.e. function p, ue. The
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energy equation (14) differs from the ordinary equation of gas dynamics by the
presence of term pq on the right-hand side. Note that ¢ = 0 if x; = const and this
case was considered in [10]. The value ¢ # 0 can be interpreted as a mass density
of energy sources in the medium. This especially becomes clear from the Gibbs
equation (6), which for one-dimensional motions of magnetizable media can be
written as

1
due = T'ds — ped— + qdt. (15)
p

In the equation (15) the magnetic field strength is excluded. If ¢ = 0(x; =
const) this corresponds to a two-parametric medium with constitutive parameters:
p and s, mass density of internal energy u. and pressure pe, besides

ue:ue(p’5)§ Pe :pe(p,S)-

At g # 0 functions y; = x;(t) are given by appropriate boundary conditions.
They determine the energy exchange between the nonmagnetic medium and
external bodies. They can be considered as external control of nonmagnetic
medium from the external system, which is the magnetic field.

Nonmagnetic medium, defined by equations of state (14), below will be called
an effective medium, corresponding to the initial magnetizable medium.

Equations (14) can be written in the form:

% L

pE(p7$7t) :po(p7T> 47T

H
/ 1 — ppp)HdH,

0

H

1

/ pw—Tur)HdH.
0

t)y=u’(p, T
ue(p757) U(p, )+4TFPM 47TP

The temperature and the magnetic field strength in the right-hand side of
equations must be excluded using relations:

T:T(pVSin); H:H(prin);
Xi = Ba(t), Hy(t), H (t).

To obtain them it is necessary to solve for T', H the following system of nonlinear
functional equations:

1
® = pu(p,T,H)H — [x7 + 1*(p, T, H) (x5 + x3)]2 =0,
H
1
U=s5—5"p,T)— /MTHdH:O.
4
0

Conditions for the solvability of this system of equation for the T, H consist

of the inequality
(2, V)

o) 7
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which assumed to be satisfied.
Thus, in the case of a linear isotropic magnetization, taking into account the
magnetocaloric effect (u = u(p,T)), we have:

[1*(x3 + x3) + xiler,

1
0
= T

_ 1
H=[x3+x1+p 7.
Then from the first equation the dependence T' = T'(p, s, x;) can be determined

and the second equation gives necessary relation H = H (p, s, X 4).
After that, equations of state of an effective medium are determined:

pe = pe(ps s, xi) =" (0, T) + Sra : 5[ (

—pe) (X5 + X3 ( plip)X T,
ue:ue(pasaxi):u ( ) [:uz(
Io)X

1.

If a non-linear law of magnetization is considered and magnetocaloric effect
can be neglected, i.e. u = pu(p,H), then s = s%(p,T), T = T(p, s) and the
dependence H(p, x ;) is directly determined by the law of magnetization.

As equations of state of the effective medium depend on the time explicitly,
such medium is non-stationary. This kind of medium has recently been studied in
electrodynamics [12]. It should be noted that equations (13)-(15) are essentially
nonlinear even in the case of an ideal medium because p. = pe(p, s,t). They are
quasi-linear only in the case y; = const.

) —
~Tpe)(x5+x3) — (

3. Excitation of acoustic vibrations
in oscillating magnetic field

At non-stationary parameters x; = x;(t) the equation (13) allows stationary
homogeneous solution:

p=po, v=1v9=0, s=sg=const.

In this case, the energy enters to effective medium according to the equation

Oue
=q(t).
5 q(t)

If magnetocaloric effect is neglected, the temperature of the medium will be
constant: T = Tj. But when this effect is taken into account the temperature
of the homogeneous state depends on the time: T' = T'(t), so that the condition
of adiabaticity is performed (s = sy = const). Furthermore, the magnetic
field is homogeneous: H = H(t). Depending on the type of source ¢(t) in the
magnetizable medium new effects, that have not previously been studied, become
possible.
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The solution of system (13) for not heat-conducting medium (x = 0) is sought
in the form
p:po—l—pl(x,t), v :U/(Zﬁ,t),
where the prime denotes the perturbation of parameters.
By linearizing of equations (13) relative to homogeneous state, we obtain:

8,0 61) _ 0
ot Mgz ~
o' 00 4\ 0%
— — = — =0 16
Por T o T\CTET) G T 18)
s = sg = const.
Here a®> = (%%f)s,xi(t)a i.e. derivative of the effective pressure is calculated at

constant entropy s and given functions y ;(¢). Therefore

a® = a*(po, s0, x1(t), x2(t), x3(t)) = a*(t).

As shown in [10], a? is equal to the square of the velocity of sound propagation
in magnetizable medium and given by the following expression [4]:

a’(p,t) = Lo — Ly (1 + Lo)™

Lo = px31 + 96239632,

Ly = drppm? [X3(t) + p2(3(t) +x3(1)) | x

X(ppp + NMTUCQ?,) oy + pr T) + MTT0$23] ;

Ly = (42 MTTon [Xl( )+ w2030 +x31) ] -

—pPua BT 0B () +x3(1) ) (W + paB)7h

m~! = 477,0#(#2 + paB); (17)
N7l =1+ Ty (sf — urmB?);

x93 = pN [murB*(u, + prT,) — sy — s, ] ;

r31 = (pp + Yp + UrTp)/p + prpmB?(pp + prTp);

232 = (p% +U1rTy)/p + pTsopp prmB?;
Op°
T = (&5),: bl = (QL> :
P
Due to the potentiality of one-dimensional motions v/ = 0¢/dz, where

¢ = ¢(x,t) is the velocity potential. Then from the second equation of (16)
the equation for density perturbations is obtained

dp 0% 1 4
/__7 v _ =
P = <8t+ 082>, 2 p0<<+377>- (18)

This allows to get from the first equation of (16) the following equation for velocity
potential

—a + 1 — + V=5

o Py Po [y &
ot? Ox? 0x20t ot 0x?

] d(lna ) =0. (19)
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Trivial solution ¢ = const of this equation corresponds to the equilibrium
state of magnetic fluid p = const; v = 0. The stability analysis of this equilibrium
state is performed below.

The solution of equation (19) is sought in the form

pla,t) = p(t)e™.

For the amplitude of the perturbation ¢(t) we get

¢+ |k — dln(a2)] ¢ + k2 {CLQ -1 iln(a2) v =0. (20)
dt dt

For further study of equation (20) it is necessary to specify the explicit form
of a?(t), given by the expression (17). In the case of general isotropic law of
magnetization, equations for equilibrium state of effective medium can be obtained
only by using numerical methods. For the study of qualitative characteristics
of excited acoustic oscillations in magnetic fluids, the most important case of
isotropic magnetization is considered.

For an ideal paramagnet the magnetization is determined by the Langevin
equation [11]:

M =mnL(€), £=-——, L=cthé—¢1,

where: m is the magnetic momentum of ferromagnetic particle, n is the volume
concentration, k is the Boltzmann constant.
Then in weak fields (£ << 1) we obtain

dreym?

3MET’

where c; is mass concentration of magnetic particles, M is the mass of a single
ferromagnetic particle. If the temperature changes are neglected: a = const. Then

p=1l+ap, a=

—1)2
a® = aj + (MSM;J,) X; (21)
_ ap°(p,s°
pe=1"(p,s%) + = (x3+x}) - Eax} L =so=s5 aj=2L)

Here a% is the square of sound velocity in the medium in the absence of a
magnetic field.

In this case it is obtained, that the magnetic field components, perpendicular
to the direction of wave propagation, do not affect on the velocity of sound
propagation. Moreover, the velocity of sound propagation along magnetic field
direction is greater than in the absence of the field.

Suppose that the parameter x1g is time-dependent according to harmonic law

X1 = X10 + [ cos 2wt. (22)
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Then for the sound velocity in the medium we have

—1)? 2 2
a’(t) = al + %Tpu?)’ (X%o + % + 2x100 cos 2wt + % cos 4wt> ) (23)
where ay = aop(po,so), p = p(po) are constant parameters, determined at

equilibrium state. By substituting (23) in (20), the following equation is obtained

Lo 4 [0+ 2hossin 27 + by, sindr] 42 4
(24)
+[0p + 2025 8in 27 + 2604 sindT + 2605, cos 27 + 2604, cosdt] p =0,

where

k2 1 1)2
Yo = wuo’ as = gwp23§§067 Yas = 4:[,#3142ﬁ2

_ k% 42 _ (e=1)%*K*vox10 _ (p=1) )2k2x10
90 - TA ; 025 — T 2mppPwA? ﬁa A ppBw? Ba

_ (u=1)%k?v0 52 (p=1)%k* 52 42 _ (n—1)°
943 ~ dnppBwA? ; 940 — 16mpu3 wzﬁ A CLO + Ampp® Xl()a

T = wt is dimensionless time.
The equation (24) has periodic solutions, corresponding to acoustic waves.

4. Asymptotic solution
The equation (20) by substitution

o(T) = aZexp <— kzz()”) (25)

is reduced to the form

&7z |Ka®  200k® da <k21/0 1da)2 d<1da>

dr2

Z =0.

w? wa dr \ 16w Sadr dr \adr

In the case of time-dependent sound velocity in the form (23), by neglecting of
terms of order 32, the Hill equation for the function Z is obtained

£z
dr2

In the first approximation by the small parameter § marginal stability curves of
the first unstable region is given by

Op = 1+ Y2 £ (010 — th1s)% + 02,)/2.

+ [0o — i + 2(01c — Y15) cos 27T + O1,8in27)] Z = 0. (26)

As follows from (25), it is necessary to find an unstable solution of the equation
(26). Using the method of Whittaker [13, 14], as a first approximation is taken
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Z = €' sin(1 — o). (27)

By substituting (27) in (26) and equating coefficients at sin7 and cos T, for
the first unstable region is obtained

0
27y = (01c — Y1) sin 20 — # cos 20, (28)
28
0
=1+ 1/)% — 72+ (010 — 15) cos20 + %sin2a.

From this

2 _ 2 2 2, 03.\'?
72 = —(1+ 00— v}) + (400 — vB) + (Bro — w12 + %)

(29)

02
(01c—1p15)E[(rc—th15)2+ 18 — 442]1/2

tgo = 2y —015/2

Values 72 >0, 0 <o <m/2 correspond to unstable solutions.
In the first approximation, in view of (25) and (27), the solution of the
equation (20) is obtained

o(t) = A exp((yw — k?vo/2)t) sin(wt — o).
This is periodic solution if the following condition

. k2V0
= 2w

is satisfied. Then the equation (19) for the velocity potential has periodic solution
o(z,t) = Aexplilkx —wt+o0)),

which corresponds to the potential of small-amplitude waves, excited as a result
of parametric instability, and propagating at the velocity w/k. The frequency of
excited waves is twice less then frequency of the parametric excitation.

Taking into account (29), the equation, that determines the magnitude of the
wave vector depending on parametric excitation frequency, is obtained:

2 2 2
(1) a5 (1) o (122) " 00] - izt e =

L] (-9 ()]

Hence it follows that the excited waves are dispersive and the dispersion is a result
of the viscosity of the medium.

(30)
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In the case of an ideal medium the equation (30) has two solutions

w? —1)?
5= A(=xe), &= %. (31)
Thus in this case waves propagate without dispersion. As A is the wave velocity
in a constant field, the oscillating part of the magnetic field can leads to either
increase or decrease of their velocity.

Values (31) correspond to periodic solutions of the equation (26) and the value
of parameters, which belong to the boundaries of stability regions. Therefore, at

the same frequency of the magnetic field can be excited waves of different lengths.
5. Numerical solution

For the case of weak magnetic fields ({ << 1) the equation (24) for the velocity
potential was obtained. The equation (24) includes periodic functions of time, so
the solution of this equation is sought in the Floquet form

p(r) =Y (7),

where v = s+ i« is the Floquet exponent; Y (7) is a periodic function with period
=, therefore it can be expanded in the Fourier series

20)= 3 g

Then - B
o(1) = Z b€ qon = s+ i(a+ 2n). (32)
By substituting (32) in (2n4:),_ov:;e obtain
i e [(g3,, + qantbo + 00)dan +
+(02c — i(925n;_q<>20nw25))¢2n+1 + (O2¢ + i(02s + q2n¥2s))P2n—1 + (33)

+(94C - Z'(945 + q2nw4s))¢2n+2 + (940 + i(94s + q2n¢4s))¢2n72] = 0.

In matrix form (33) can be written as
(C+ BB+ 8°D)¢ =0, (34)

where C' is diagonal matrix with complex coefficients, B and D are banded
matrices with two and three subdiagonals:

0 bag O 0
P I T B PR
C|iB= o0 bipg 0 bip
0 0 ca1 ... .. 0 0 b1 O
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d1-1 0 dag O
0 doo 0 dop2

i1 0 diy 0 ... |
0  dyo 0  dop

)

kvy k> (p—1)° (b —1)* K
Cnn = Qo + o Lt 3 (ag + WX%O> s dnn = Wﬁé

(=12 [ 1 et ]
S R 10,
2mppd | 202 T af + (p— 1)2x3/ (4w pp)
(=12 [ B ilan + )
drpp? | 4w? T af + (p—1)2xq5/(4mppd) |

bn,n:l:l =

dn,n:I:Q =

In the case of pure oscillating magnetic field x10 = 0 : by n+1 = 0. Then by
inverting of the matrix C, from (34) follows the ordinary eigenvalue problem:

0. (35)

At the stability analysis is usually used the following procedure [16]: the first
step is to fix the wavenumber k£ and the amplitude 3, as well as values of other
hydrodynamic parameters of the system, and then the Floquet exponent v = s+ia
is calculated. Marginal stability curves in the plane (k,3) are curves on which
s(k,B) = 0. This condition is satisfied by interpolation of § at fixed k between
negative and positive values of s.

But in our calculations the method described in [17] is used: the Floquet
exponent v = s + i« is pre-fixed, then the eigenvalue problem (35) is solved
at fixed value of k. The largest real positive eigenvalue é, corresponding to a
minimum amplitude [, is sought by interpolation of k. To construct marginal
stability curves in the plane (k, ) we have to set s = 0 and o = 0 (o = 1),
which corresponds to the case of harmonic (subharmonic) oscillations. The above
method for calculation of boundaries of instability regions is used to solve the
problem (35). Matrices A and D are cut to size, providing the required accuracy
of calculations. In all calculations the typical ferrofluid parameters were accepted

(C™'D)¢ =

v =0.1(P), p =2, 0:30(3@, p:1.2(i3), ap=1.5-10° (C—m>
cm cm s

Boundaries of the first two unstable regions (the Ince-Strutt diagram for a

viscous fluid) is shown on Fig.1.a) and Fig.1.b). Marginal stability curves form

narrow regions ("tongues"), the value of parameters outside (inside) of these

regions corresponds to stability (instability). The absolute minimum of this curves
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Fig. 1. a) The first and b) the second region of parametric instability
at excitation frequency w = 100 (Hz) of magnetic field.

determines the critical wavenumber k. and the critical amplitude B., at which
instability occurs.

Fig.2.a) shows, that if magnetic field frequency increases, acoustic waves with
less wavelength are excited. Moreover, at increasing of frequency for excitation of
parametric instability must be applied the oscillating field of greater amplitude
(see Fig.2.b) )

0.04 : : - - 500
al
400
0.03
= & 300
= 02 <)
P @’ 200
0.01 .
0.0003 : : : : 9 : : : :
00 2000 4000 6000 8000 10000 00 2000 4000 6000 8000 10000

o (Hz) o (Hz)
Fig. 2. The dependence of a) the critical wavenumber k. and b) the critical
amplitude 5. on the frequency w of oscillating magnetic field.

In the case, when the magnetic field consist of constant and oscillating parts,
the eigenvalue problem (34) must be solved. Using the column vector ¢ := ¢,
the equation (34) reduces to the ordinary eigenvalue problem for matrix doubled

<_DI—IB —D0‘10><?>:B<?>, (36)

where I is the identity matrix, which has the same size as B, C' and D.
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Fig. 3. a) The first and b) the second region of parametric instability for
different values of stationary field y19 and frequency w = 100 (Hz).

Similarly to the previous case, to construct regions of parametric instability
in the plane of parameters (k,3) at fixed values of xj9, the smallest real
positive eigenvalue [ of the problem (36) is sought. The calculation revealed
that stationary component of the magnetic field has less (greater) impact on
the structure of odd (even) instability regions. For the first unstable region at
increasing of xi1g critical amplitude (5. remains almost unchanged, but exited
sound waves have larger wavelength (see Fig.3.a)). Whereas for the second
unstable region Fig.3.b) shows, that if yio increases, the critical amplitude S,
also increases, i.e. instability threshold shifts to higher values.

Conclusions

The parametric instability of ferrofluid volumes in weak homogeneous
magnetic field, which consist of constant and oscillating parts, is considered.
The appearance of unstable zones is studied. The problem was reduced to the
Hill equation, which is studied using asymptotic and numerical methods. Marginal
stability curves, that form narrow unstable regions corresponding to acoustical
oscillations in ferrofluid, were obtained. The dependence of a structure of unstable
tongues on the frequency w and constant part xi9 of magnetic field is studied.
It is shown, that increasing of w leads to increasing of critical wavenumber k.
and critical amplitude 5. of magnetic field, required for the onset of instability.
Also the increasing of y19 causes to the appearance of shorter wavelength and
can shifts a threshold of instability.
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In this work we consider the problem of global bounded control synthesis for a
nonlinear system with uncontrollable first approximation. A class of bounded
controls that steer the system from any initial state to the origin in some finite
time is constructed based on the controllability function method.
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Bebis M. O., T'moGanpHuii cuHTe3s OOMEXXeHUX KepyBaHb IJs CH-
cTeM 31 CTerneHeBOI HeJIHIHHICTIO. Y pPoOOTI pO3NISIaeThCs 3aada
r100aIbHOTO CHUHTE3Y OOMEXKEHWX KepyBaHb i HEJIIHIWHOI HEKepOBAHOI 3a
mepiuM HabauKeHHsaM cucremu. Ha ocHoBi MmeTony (yHKIT KEPOBAHOCTI MO-
OyI0BaHO KJIAC OOMEKEHWX KepyBaHb, fKi MEPEBOAATH CUCTEMY i3 JOBLIBHOTO
HAYAJIHHOTO CTAHY y TOYATOK KOOPJMHAT 3a CKIHYeHHUWIT Jac.

Kamowosi crosa: 3amadua cuHTe3y, CTabiTi3alisa 3a CKiHYeHHUH 9ac, HeTiHiifHi
cucremMu, MeTo (PpyHKII KEPOBAHOCTI.

Beous M. O., TI'mobasnbHBIN CHHTE3 OrpaHUYEHHBIX YyHPaBJIEHUH
JJIS CHCTEM CO CTEIleHHOU HeJmHelHocThio. B pabore paccmarpuBaercs
3a7a49a rI00ATHPHOTO CHHTE3a OTPAHWYEHHBIX YIPABICHUH 11 HeJIUHEHHOI
HEyIPAaB/IAEMOil IO TepBOMY NpUOIMKeHWio cucrembl. Ha ocHoBe meroma
dyHKIUKU yOpaBsgeMOCTA I[IOCTPOEH KJIACC OrPAHUYEHHBIX YIPABJIEHU,
KOTOPBIE TIEPEBOJAT CHCTEMY U3 TTPOU3BOTHLHOTO HAYATHLHOTO COCTOSHUS B HOJIH
3a KOHETHOE BpeMs.

Karwuesvie caosa: 3amada cuaTe3a, CTadUIN3alus 38 KOHEIHOE BpeMs, HEJU-
HEHHbIE CUCTEeMbI, METO (DYHKIIUU YIPABIAEMOCTH.
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1. Introduction

The problem of control design for nonlinear systems has been paid much
attention in recent years [1]—[12]. In the present paper we consider a class
of nonlinear systems with uncontrollable first approximation. Such systems
play important role in control theory since most actual dynamical systems are
inherently nonlinear.

Consider the following nonlinear system

-/tl =u, |U’ S d7

Ty =C1%i—1, 1=2,...,n—1, (1)
2%+1

Tp = Cn—1T,_1

where k = %, p > 01is an integer, ¢ > 0 is an odd integer, v € R is a control, ¢;,

n—1

i=1,...,n—1 are real numbers such that [[ ¢; # 0, d > 0 is a given number.
i=1
System (1) is not stabilizable with respect to the first approximation. The
stabilization problem for system (1) with ¢; =1,i=1,...,n— 1, and k € N was

solved in [4]. In the present paper we consider the problem of global synthesis
of bounded controls for system (1). For the sake of brevity this problem will be
referred as the global synthesis problem.

The global synthesis problem for system (1) is to find a control u = u(z) such
that

(i) for every xzgp € R™ there exists a number T'(zg) < 4oo such that

lim x(t,z9) = 0, where z(t,zp) is a solution of system (1) with v = u(x)
t%T(Io)

that satisfies the condition z(0, zg) = xo;

(ii) the control u(zx) satisfies the restriction |u(z)| < d for all z € R".

The control law construction is based on the controllability function method,
which was proposed by V.I. Korobov [2] for a nonlinear system of the form

i=ot,x,u), reR" uweQCR", 0cintQ, (2)

where ¢(t,0,0) =0 for all t > 0.

Consider the case % =0 for all z € R", u € R. The main idea of the
controllability function method is to find a function ©(z) (O(z) > 0 for z # 0,
©(0) = 0) and a control u = u(z) such that the following inequality holds

Z 3% ) i@, u@) < 0% (2), $>0, a>o0. 3)

Denote by xz(t,zo) the solution of the closed-loop system & = (¢, z,u(x))
that satisfies the condition z(0,z9) = z¢. The last inequality ensures that the
trajectory of the closed-loop system steers any initial point xg € R™ to the origin
in some finite T'(xo) [1] and z(¢,z9) = 0 for all t > T'(zg). Moreover, the time of

motion satisfies the estimate T'(xg) < %@é(xo).
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It is important to note that inequality (3) guaranties that the origin is stable.
In this case the control u = u(x) is often called a finite-time stabilizing control;
and the origin is said to be a finite-time stable equilibrium [10] of system (2) with
u = u(x).

The paper is organized as follows. In Section 2 we consider the case ¢; = 1,
i=1,...,n— 1. Namely, we construct a class of controls u = u(z) that solve the
global synthesis problem for system (1). We also show that these controls satisfy

n—1

the condition |u(z)| < d. In Section 3 we consider the case [] ¢; # 0. Finally, the
i=1

example is given to illustrate the implementability of the approach proposed.

2. Control law construction for systems with power nonlinearity

Consider the global synthesis problem for system (1) in the case ¢; = 1,
i=1,...,n— 1. In this case system (1) takes the form

j:lzuu ’u‘gdv
:i’i:xi,l, i:2,...,n—1, (4)

where k = %, p > 0 is an integer, ¢ > 0 is an odd integer.

In this section we construct a controllability function and a class of bounded
controls that solve the global synthesis problem for system (4).

Let us introduce the following diagonal matrices

D(©) = diag (@™ 1, @™ 2 ... @™ " 1),

H=diag(m—1,m—-2,...,m—n+1,0),

where m = 2k(n — 1) + n.

Let ag > 0 be a fixed numbed. Suppose that F' is a positive definite matrix
such that the matrix F! = F — FH — HF is positive definite. The additional
conditions on ag and F will be obtained later.

We define the controllability function ©(z), for = # 0, as a unique positive
solution of the equation

2000°™ = (FD(O©)z, D(0)x). (5)

We remark that equation (5) has a unique positive solution, for every fixed z # 0,
if the matrix F'! is positive definite. Moreover, the function ©(x) is continuously
differentiable at every point x # 0. We complete the definition of ©(z) by putting
©(0) = 0. Thus ©(z) satisfies the following equality

2000%*™(z) = (FD(0(x))z, D(O(z))z). (6)
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Consider the following control law

1 21<:4E1
) = gy (0 D)) + g, @
where a = (a1, a2, ...,a,)* € R". The numbers a; < 0,7=1,...,n+ 1 are to be

chosen later.
We use the following notation

al as ... Gp—2 GQp_1 Gn n+1
1 0 0 0 0 0
A= ... . hp = (8)
0 0 ... 1 0 0 0
0 0 ... 0 0 0 1

Assume that the control uw = u(x) of the form (7) is applied to system (4).
Calculating the derivative of ©(x) along trajectories of the closed-loop system (4),
from (6) we obtain

_ (W F+FA)yO(),2),y(0(),r))
@ ((2mF—FH — HF) (O(x),x),y(O(x), z))
2(Fhy,y(O(x), 7)) 224 ' O(x)

n—

(2mF —FH - HF) O(z),2),y(0(x),))’

where y(O(x),z) = D(O(z))z.

We note that since the matrix A is singular, it is impossible to choose a
positive definite matrix F' so that the matrix A*F + F A is negative definite. So
we choose the positive definite matrix F' so that the matrix A*F + F A is positive
semi-definite. To this end, we consider the following Lyapunov matrix equation

A*F + FA =W, (10)

@(x))

9)

where W = {w; ;};';_, (wij = wj;, i # j) is some positive semi-definite matrix,
F'is an unknown matrix.
Let us introduce the following real symmetric matrix

wip o ot Win-l
W, | = . (11)
Win—-1 -+ Wn—-1n-1
Consider the case of the positive definite matrix W,_;. In [4, theorem 1] it

was proved that the matrix equation (10) is solvable in the class of all positive
definite matrices F' if and only if the matrix W has the form

w11 Win—1 Win—15.2
= 12
w Win-1 Wp—1n—1 Wp—1n— 1an 1 (12)
a?
Win—1 Wn—1n—1 Wn—1n—1,2

anl anl

Ap—1
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Further we need the following lemma, which was proved in [4, p. 77].

Lemma 1. The matric W given by (12) is positive semi-definite if and only
if the matriz W,,_1 given by (11) is positive semi-definite.

The following theorem describes the class of positive definite solutions of

matrix equation (10).

Theorem 1. Suppose that the matrices A and W are defined by (8) and (12)
respectively. Furthermore, suppose that the matriz W,,_1 defined by (11) is positive
definite, and eigenvalues of the matriz

ayr a2 -+ Ap—2 GQp—1
1 0 - 0 0

Ay = (13)
o 0o - 1 0

have negative real parts. Then matriz equation (10) is solvable and its positive
definite solutions have the form

Ju o Jin—1 o fin-1
e . . . e u
fln—l e fn—ln—l a:il fn—ln—l ’ ( )
a:il finer - a:T_Ll Jn—1n—1 frn

where elements of the matriz F,,_1 = {f”}?;:ll are defined by the matriz equation
A:_an,1 + anlAnfl — —Wn-1

and fnn > 0 is an arbitrary real number such that

an 15
fnn > a2 fn—ln—1~ ( )

n—1

Proof. This theorem is a simple consequence of theorem 1 and theorem 2
from [4].

Now we define the matrix F' and numbers a;, i = 0,...,n + 1 so that there
exists 4 > 0 such that O(z) W < —f. This means that inequality (3) holds for

a=1.

Suppose that the matrix Wy,_; is a given positive definite matrix of the
form (11). Then, by Lemma 1, the matrix W of the form (12) is positive semi-
definite. Suppose that the numbers a; < 0, ¢ = 1,...,n — 1 are such that the
matrix A,_1 of the form (13) is stable, i.e. eigenvalues of the matrix A,_; have
negative real parts. We define the matrix I’ as a positive definite solution of matrix
equation (10). Then, according to Theorem 1, F has the form (14).
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Thus, using (9), the derivative of the controllability function takes the form

ou| = ZUVHOE).2).9(O). ) + AFh O, M)HOE
(4) (F'y(©(z), ), y(0(x), ) ’
where F! =2mF — FH — HF.

We introduce the following notation I, o = diag(1,...,1,0,0) is a matrix of
dimension (nxn), I,,_1 1=diag (1,...,1,0) is a matrix of dimension (n—1)x(n—1),
I, is the identity (n — 1) x (n — 1) matrix, Z = (z1,...,Zp_1).

Since the matrix Wy,_; is positive definite, we have the following estimate

(Wn_12,2) > Apin(2,2) for all 7€ R"1,

where Apin > 0 is the smallest eigenvalue of the matrix W,,_. Therefore,
- ((Wn—l - A77%'77,171—1)/‘7?7 f) - )‘minxngl <0 forall ze Rnila

i.e. the matrix Wy,—1 — Aninp—1,1 is positive semi-definite. Then, by Lemma 1,
we have

— (W = Aminn2)z,z) <0 forall zeR"™ (17)
Introducing the notation b = —th, we get
bi = (flzan+1+ fzn 1) 'L':].,...,’I’L*17
bp = anpt1 = fln—l + fon-
n—1

We choose an41 so that b, = 0. Thus we put

Gl = Jon  Gn-1
+1=— : -
" Jin—1 Qn

Finally, we obtain

2
(flz fon — fin—1 ;Ln )an_l, i=1,...,n—1. (19)

fl”_ an—1

Combining (15) and (19), we deduce

2
Q an—1
b1 = (fnn fn In—1 2n > = > 0.

ap—1 n

Consider the following (n — 1) x (n — 1) matrix

xﬁ—l
0 0 Ami by 0L
min n—2 @k’(n—l)
ZUk ZUk
n—1 n—1
b1 b 2b,_1
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For definiteness we assume that

xk
>\min b1722k;
W mzn (@ ZU]_) - 2b1’ WAmin (@7 SCQ) = :L'k 9
2
bigar 2Dz

By direct calculation it can be shown that

Amin (In29(©,2),9(0, 7)) + 2(b, (0, z)) 2?10 =

N (20)
(Wa i (©,2)3(0, 2),5(0, 7)),
where :/y\(@’ l‘) — (551@771—17 . ’xn—Z@m_n+2 k+1@m n+2)‘
For n = 2 equality (20) reads as
Amin (I2,29(0,2),y(0, z)) + 2(b,y(@,:€))x§k+1@ — o2 t2em,
Using equality (20), we rewrite @(m)‘(4) in the form
@(m)’ (W = MninDn2)y(O(a), 7), y(O(w), 7))
@) (Fly(©(z),z),y(0(x),z)) 1)
(mem(G(w),xn 1)

where F' = 2mF — FH — HF.
Lemma 2. Let A\pin(©,2,-1) be the smallest eigenvalue of the matrix

W ©,2p-1). Then

m'Ln (

- 1 S
)\mln((—)7 .’En_l) = 5 )\mzn + 2bn—1 - (Amzn - 2bn—1)2 @2]{: n— 1 Z b2

forn > 3.
Proof. Denote by xa(A\) the characteristic polynomial of the matrix
Wi,in (©,25_1). It is not difficult to establish by induction that

x,

Qk n—2
XA()‘) = (>\mm - )\)n—B <)‘2 - (anfl + )\mm)/\ @2k Z b2 + an 1>\mm> .

By direct calculation, it is easy to verify that the smallest root of this equation is
Amin (0, p—1). Thus the lemma is proved.

Lemma 3. Suppose that ag satisfies the inequality

1
2n— min 2
b1 > . (22)

1
0< < =Apin(F
a0 < Amin )<b§+b§+---+bi_2
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Then the matriz Wy, . (O(x),zp—1) is positive definite for every fized x # 0.
Proof. The matrix F' is positive definite. Then, from (6), we obtain

2a00*™ () 2 Amin(F)[ly(©(2), )|, (23)
where A\pin (F') > 0 is the smallest eigenvalue of the matrix F'. Since
ly(©,2)[? > 220%™ i=1...n-1 and |[y(©,2)|*> 22,
it follows from (22) that

2
n 2CLO

©2m(z) = Apin(F)

2
T; 2ag . x

‘ =1,....,n—-1
@21($) — )\mln(F)7 1 ) 7n Y

for all z € R™\ {0}. In particular

Tp 2a9
< :
©2=1)(z) = Apin(F)

Combining (22) and (24), we obtain

(24)

1.721121 2bn71 )\mln
<
Q2k(n=1)(z) ~ b2+ b3+ -+ b2,

for all z € R™\ {0}. This inequality implies that

o~

)\mzn(@(x)a xn—l) > % <)\mzn + 2bn—1 _\/()\mzn - 2bn—1)2 + 8bn—1)\min >

- % </\mzn + 2bn—1 _\/()\mzn + 2bn—1)2 > =0.

Therefore the matrix Wy . (©(x),x,—1) is positive definite for every fixed x # 0.
This concludes the proof.

First we prove that ©(z) < 0 for any ag that satisfies condition (22). So
suppose ag satisfies condition (22). Let us introduce the following notation

n—2
5 _ 1 2 k 2
N = 5 Amin + 2601 — | Amin — 2bp_1)* + 4L Z;b ,

2(10

eigenvalue of the matrix W)

where L = . Then, by inequality (24), we obtain that the smallest

in(O(2), z) satisfies the following inequality
The last inequality implies that

(Wapin (O(2), 20-1)(O(), 2), §(O(), 7)) > \[F(O(x), )] (26)
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Due to positive definiteness of the matrix F'! we have the following estimate
(Fly(O(x),2),y(0(2),2)) < Amas(F)|ly(O(x), 2)||%, (27)

where \pqz(F1) > 0 is the largest eigenvalue of the matrix F''.
From (21), using (26) and (27), we obtain

(W = AminIn2)y(O(x),2), y(O(x),2)) + X - [§(O(x), )|
(1)~ Amaz(FD)[[y(0(x), )2

, (28)

where §(0(z),x) = (£:0™ 1(z), ..., 2y_0O™ " F2(z), 2K 1O F (2)).
Inequality (28) implies that

@(x))w <0 forall zeR"
Indeed, for ||[y(©(x),z)|| # 0 the last inequality is true since inequalities (17)
and (25) hold. For ||7(O(z),x)| = 0, from (28), we have

2

: Wp—1n—10

| < et g
(l') 4 )\ma:p(}?l)a2

n—1
where Apaz(FY) > 0, wy_1,1>0.

Thus the origin x = 0 is a globally asymptotically stable equilibrium of the
closed-loop system (4). Now we prove that there exists 5 > 0 such that

O(x) <5

n
Suppose that 2, i = 1,..., n are real numbers such that > [2?| # 0. Consider
i=1
a family of curves defined by
1 1
1 = aflap| " m sign(azy) || m sign(zn),

2 . 2 .
wy = e |~ m sign(zy) || sign(zy),
0‘7
n

Tp—1 = x%fl\x %sign(azg)\xn\%lsign(xn)

Ty = Tn.

We note that for every fixed point 2° = (z9,...,2%) € R?\ {0} such that 20 # 0
there is exactly one curve from the family passing through z°.
Suppose that the point 2 € R” lies on the curve (29) for some fixed z% # 0.

By direct calculation, it is easy to verify that

O(z) = (o) 2|~ |an| . (30)
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Now we estimate @(m)‘ N for every point x € R™ that lies on the curve (29)

with some fixed zg # 0. From (28), using (29) and (30), we obtain

~ n—2 2, k
(07 dwka) & (524 272 )

O(x < - , 31
@), < N (FD) 212 oy
where
29 o B
z2=(21,...,2n) = (:z:é@m_l(xo)’ 0 Lom—n+l(g), 1) .

We will show that the right-hand side of (31) is bounded from zero. Consider
the function G(%z) defined by

~ n—2 9 k
(W = Xnindn2)z,2) + A (Z 22 +ng_+12< ag ) )

- Fz, z)
G(Z)=-— = 2, (32
) M (F1) ]2 2
where z = (21,...,2,-1). Let R be an arbitrary number such that
1 n—
0<R<-. tn UWnoind (33)
2 ap—1 n—1 )
Win—1
=1
First we estimate the function G(p) for every point z = (21,...,2,-1) such

that 22 + -+ + 22_; < R%. From (32) and (33) we deduce that

o 2 n—1
((Wn—l - In—l)\min)zp Z) + agnl Wn—1pn—1 + 2a:i1 Z Win—1%;
n- i=1

G(E) = -

)‘max(Fl)HZHQ

S

n—1 9 n—I1 9
a
Wn—1n—1 = 2575 4 [ D0 Wi 14| 22 %
-1 i=1 i=1

<
B /\max(Fl)HpH2
o2 n—1
v -2 SR
1=
< -

Amaz(F1) (R +1) = —Mi(R) <0. (34)

Second we estimate the function G(z) for every point z = (z1,..., 2,—1) such



46 M. O. Bebiya

that 22 + -+ + 22_; > R% From (32) and (33) we deduce that

~ k
2 2k+2
A (z%+-~-+z3_2+ <(F‘;0z)> F) )

- Amaz (F1)]|2]12

G ()

.o {1( Xnas F> } (N2 + o 22g) + 22547
- Amaz (F 1 2][2++2

~ k

A min {1, (/\ 2“0 } 2k+2 4 Z2k+2 + 22k+2)
< _
- Amaz (F |2[2++2

~ 2a0 k
_m “{1’( ) § o (e
= Az (F HzH2k+2

2a, k

P\ mln{ mazOF) } R2k+2
< — = —My(R) < 0. 35
= Amaz (F1)2(1—2)k + 1)k 2(R) (35)

Thus, from (34) and (35), we obtain
G(2) < —min {M;(R), Ma(R)} <0 forall ZecR" !

The last inequality implies that (;)(x)‘u) is bounded from zero for every point
x € R" such that z,, # 0. Since @(m)‘(4) is continuous at every point 2 € R™\ {0},
we have the following estimate

O(x) W < —min {M;(R), Ma(R)} forall z <€ R™\ {0}. (36)

Thus inequality (3) is satisfied for & = 1 and 8 = min {M;(R), M2(R)} > 0.
Therefore the equilibrium point = = 0 of the closed-loop system (4) is finite-time
stable.

We proceed now to establish conditions under which the control u = u(x)
defined by (7) satisfies the estimate |u(z)| < d.

Lemma 4. Suppose aj is a unique positive root of the equation

2ag 2ay >k
— Qn - = d’ 37
o (Ml = o (8 (7)
where a = (a1,...,ay), anr1 < 0, Apin(F) > 0 is the smallest eigenvalue of the

matriz F. If ag satisfies the inequality

0 < ap < ag,
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then the control u = u(x) defined by (7) satisfies the restriction |u(zx)| < d for all
x e R"™.
Proof. Consider the function

Bloo) = |5 (uan - anH(Amf:;’F))’“) .

The function ®(agp) is continuous and strictly increasing. Moreover, ®(ag) > 0 for
all ag > 0. It is clear that

®(0)=0, and ®(ag) — +o0 as ag — +o0.

Then there exists a unique number aj > 0 such that ®(af) = d.
Now we estimate the control u = u(x) defined by (7). Since 0 < ag < af),
using (23) and (24), we have

O(z)™ "em-n(z)  en—1(z)

<\t (lall = o (220 5)") < @(a) =

This completes the proof.

Finally, we summarize our discussion, and formulate the main result of this
section. The next theorem provides a solution of the global synthesis problem for
nonlinear system (4).

Theorem 2. Suppose that the numbers a; < 0, i =1,...,n— 1 are such that
the matriz A,_1 defined by (13) is stable, a,, is an arbitrary negative number, the
matriz Wy,_1 defined by (11) is an arbitrary positive definite matriz. Let the matriz
F of the form (14) be a positive definite solution of equation (10) with right-hand
side (12). Choose fnn by (15), and any1 by (18). Furthermore, suppose that the
matriz F' = 2mF — FH — HF is positive definite. Choose ag such that

. 1 2bn—1)\min B
0< < = Amin(F » 0 )
a0 mm{z ( )<b%+b§+---+bg_2) ao}

where Amin(F) is the smallest eigenvalue of the matriz F, Apmin s the smallest
eigenvalue of the matric Wy,_1, b; is defined by (19), and af is a unique positive
root of equation (37). Let the controllability function ©(z), for every x € R™, be
the positive solution of equation (5). Then the control w = u(x) defined by (7)
solves the global synthesis problem for system (4). Moreover, the time of motion
T(xo) from an arbitrary point xo € R™ to the origin satisfies the estimate

T(0) < !

= min{Ml(R),Mg(R)}Q(””O)’
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where My (R) and My(R) are defined by (34) and (35) respectively.

Proof. According to (36) the inequality (3) is satisfied for a« = 1 and
B = min{M;(R), M2(R)}. Then, by theorem 1 from [2], the control u = u(z)
of the form (7) solves the global synthesis problem for system (4), and T'(xq)
satisfies the estimate

1

T(Hfo) < 7@(3;0)5 - min {Ml(R),MZ(R)}

B

Moreover, by Lemma 4, the control u = u(x) satisfies the restriction |u(z)| < d.
This concludes the proof.

(9(3:0)

3. Global synthesis of bounded controls for systems with power
n—1
nonlinearity in the case [[ ¢; #0
i=1

Now we solve the global synthesis problem for system (1) in the case ¢,
it = 1,...,n — 1 are some known numbers such that nlz[l ¢; # 0. So consider
the following nonlinear system =

1 =1u
T = Ci_1Ti—1, t=2,...,n—1, (38)

2k+1

ITn = Cpn—1T,_1 ,

where k = %, p > 0 is an integer, ¢ > 0 is an odd integer.

Using the results obtained in the previous section, we formulate the following
theorem, which provides the solution of the global synthesis problem for nonlinear
system (38).

Theorem 3. Suppose that the conditions of Theorem 2 hold. Let the numbers
Ci, 1 =1,...,n be defined by

caa=1, ¢ =ci—1¢i—1, 1=2,....,n—1, ¢, =cp_1C

Let the controllability function ©(x), for every x € R™, be the positive solution of
the equation

2a00*" = (C~'FC~'D(0)x, D(O)z), (39)
where C = diag (¢1,...,¢Cn) is an n x n diagonal matriz. Then the control
1 A—1 An+1 wikjl
u(z) = o () (a, D(O(2))C "'x) + 5712541“1 . on1(2) (40)

solves the global synthesis problem for system (38). Moreover, the time of motion
T(xz0) from an arbitrary point xo € R™ to the origin satisfies the estimate

1
T(wo) < min {M;(R), Ma2(R)}

O(z0), (41)
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where My (R) and My(R) are defined by (34) and (35) respectively.

Proof. Assume that the control u = u(x) is applied to system (38). The change
of variables x; = ¢z;, i = 1,...,n (z = az, z € R™) maps the closed-loop
system (38) to the system

Z21 =v(z)
Zi = Zi—1, i:2,...,n—1, (42)
2z = 22K

where v(z) = u(éz) According to (39) and (40) we have

_ 1 ~ Z2hH1
v(z) =u(Cz) = 57 (a,D(O(2))z) + an“ém—il(z)’

where the function é(z), for every z € R™, satisfies the equation

2000%™ = (FD(O)z, D(0)z).

It is clear that O(z) = @(az). By Lemma 4, we deduce that the control v(2)
satisfies the estimate |v(z)| < d for all z € R"”. This implies that the control u(z)
is bounded by the same constant d > 0 for all x € R™.

Denote by z(t, z9) the solution of the closed-loop system (42) that satisfies the
initial condition z(0, z9) = z9. Thus, by Theorem 2, we obtain that for every fixed
29 € R™ there exists a number T'(z9) < +oo such that lim z(¢,29) = 0 and

t—T(20)
2(t, zp) = 0 for all t > T'(z9). Moreover, T'(zy) satisfies the estimate
1 -
T(z) < O(20)

min {M;(R), M2(R)}

for every zp € R™.
Denote by x(t,zo) the solution of the closed-loop system (38) that satisfies
the condition z(0,z¢) = xo. Since the matrix C' is nonsingular, we obtain

lim (t,z0) =0 and z(t)=0 forall t>T(z0),
t%T(on)

where T(zq) = T(C ~1zy).

This means that the control u = wu(z) of the form (40) solves the global
synthesis problem for system (38) and the time of motion T'(z¢) from an arbitrary
point xp € R™ to the origin satisfies the estimate (41). This concludes the proof.

Example 1. We solve the global synthesis problem for system (38) in the case
n=4,d=1,c1=-1,c = %, c3 =2, k = 1. So system (38) takes the form

T =u, J|ul<1,
9‘32 = —I1,

T3 = -T2,

3
iy = 223,
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We choose negative real numbers a1, ag, ag so that the matrix As defined
by (13) is stable. For example, we put a; = —3, ag = —3, az = —1. The matrix
W3 and the negative number a4 < 0 may be chosen arbitrarily. We define W3 by

100
Ws=1[ 0 5 0
0 0 1

and put agy = —1. Then, according to Theorem 1, the positive definite solution of
the matrix equation (10), for fq4 = 7, is given by

o2 11
16 16 2 2
2% 25 35 35
| 16 7 16 16
F=171 35 1
2 16 16 16
1 35 49
2 1% 16 1

Using (18), we have a5 = —14.
According to (39) we define the controllability function O(z) as a unique
positive definite solution of the equation

2a00% = (C ~'FC ~'D(0)z, D(O)z),

where
e 0 0 0 1 0 0 0
0 e 0 o ~ 0 -1 0 0
bO=1"0 0 e 0| ““lo o -3 0
2
0 0 0 1 0 0 0 -2
Put ag = 0.00178. Then, by Theorem 3, the control
T 9 T3 27 x4 x%
=3 3 3 — 378
ur) = =350 T36ee Pienr T 2ewmm T P en)y

solves the global synthesis problem for system (43). Moreover, u(z) satisfies the
restriction |u(z)| < 1 for all x € R™.

Assume that the control u = u(x) is applied to system (43). For instance, we
take g = (—0.1,0.1,—0.4,0.3) as an initial point. By numerical simulation, for
a solution z(t) (x(0) = z¢) of the closed-loop system (43), we have the following
results: ||z(100)|| = 0.051. .., |=(5000)| = 0.0079..., |[z(11000)|| = 0.00064...,
|z(15700)|| = 0.1142... x 1072%.
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The evolution of titles of mathematical journal Visnyk of Kharkiv University
during period 1879-2015 is presented. This evolution reflects the changes of
names of the University where the journal was published. We also discover and
discuss several ways of numbering during the history and list names of members
of Editorial Board during last 50 years.

Keywords: Visnyk, mathematical journal, Kharkiv University.

Pesynenko O.B. ITomo icTopil Haimoro >kypuHauy: 50-piunuii roBineit
yu 3Buuaiiamii  137-uit  pik Bumaunsa? Hasenena eposrorisi Ha3B
MaTEeMaTUIHOTO *KypHaJIy BicHuUK XapkiBchbKOTO yHiBepcuTeTy 3a repion 1879-
2015. Ia emosrorisi BimoOparkae 3MIiHUM HA3B YHIBEPCUTETY Ji€ BHUIAETHCS
KypHas. TakoXK MH PO3KPHBAEMO Ta OOTOBOPIOEMO [IEKIJIbKA CIIOCODIB
HyMepaliil BIIPOJIOB2K BCi€l icTopil Ta HABOUMO TPU3BUINA YJIEHIB PeIaKIiiHOT
KoJierii 3a octanHi 50 pPOKiB.

Karwuosi caosa: BicHuk, maremMaTudHmii KypHaJ, XapKiBCbKUN YHIBEPCUTET.

Pesynenko A.B. O6 wmcropum Haiuero >kypHasa: 50-jerHuii ro6usieit
nian oObIYHBLIN 137-0#1 rona wsmanusa? [lpuBoanTcsa sBosONMS HA3BAHUI
MaTEeMATUIECKOI0 KypHaa BeCcTHUK XapbhbKOBCKOIO YHHUBEPCUTETA 3a IEPHOJT
1879-2015. Dra sBosIOIUS 0TOOPaXKaeT M3MEHEHUs Ha3BAHWI YHUBEPCHUTETA,
e W3maercd JKypHas. Takke Mbl pPacKpbiBaeM U O0OCYXKJaeM HECKOJIBKO
crroco00B HyMepaluu B TE€YEHUU BCeil MCTOPUM U IPUBOAUM KMEHA, YJIEHOB
PEJAKITMOHHOM KOJLIeruu 3a mnocjieanune 50 jer.

Kmouesvie caosa: BecTHuk, MaTeMaTWIecKUil KypHaJ, XapbKOBCKWit
YHUBEDPCUTET.

2010 Mathematics Subject Classification: 97A30, 01A55, 01A60, 01A61.

1. Introduction
One of the goals of this note is to explain the evolution of titles of mathematical
journal Visnyk of Kharkiv University. The way of numbering was also changed
several times during period 1879-2015.

(© Rezounenko A.V., 2015
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Although the titles were changed mainly due to evolution of names of our
University, the way of numbering should be explained separately. We do it in
the current issue since starting this year we will keep just the number of volumes.
Another goal is to list names of mathematicians who involved in publishing process
(editors).

The previous issue has the following main title: 'Visnyk of V.N.Karazin
Kharkiv National University, number 1133; Ser. Mathematics, Applied Mathe-
matics and Mechanics, (2014)’ (original 'Bicuuk XapkiBCbKOro HaliOHaJIBHOIO
yuuBepcurery imeni B.H.Kapasina, Ne 1133; Cepis Maremaruka, Ipuk/ajgHa
MaTeMaTHKa i MexaHika, (2014)”). The number '1133’ indicates the sequence num-
ber of issues of the family of independent journals under the family title "Visnyk of
V.N.Karazin Kharkiv National University’. The family consists of 22 series (e.g.,
"Physics’, 'Radiophysics and Electronics’, 'Biology’, etc.) where one of the series
has title '"Mathematics, Applied Mathematics and Mechanics’. This way of num-
bering was used during 1965-2014 and most issues of our (mathematical) series
had remark ’Founded in 1965’ on its cover-pages. This may be considered as a
proof that our journal is 50 years old. To verify this version one could find the
issue dated by 1965 and check if it has number one or not. One could see 'number
3/ volume 31’ on the title page.

Remark 1. We should emphasize that words volume’, 'number’, ’issue’ were
mainly used completely independently. The exception is the period of 1887-1918
when volumes were composed by several issues.

The precise title is "Visnyk of Kharkov State University, Number 3; Ser.
Mechanics and Mathematics’ / ’Communications of Department of Mechanics
and Mathematics and Kharkov Mathematical Society, vol. 31, (1965)’ (orig-
inal 'Becrauk XapbkoBcKOro rocyiapcrsenHoro yuusepcutera, Ne 3, Cepus
MeXaHUKO-MaTeMaTn4Ieckas’ / '3alliCKi MeXaHUKO-MaTeMaTHIeCKOro (haKyIbreTa
n XapbKOBCKOTO MaTeMaTHdeckoro obmecrsa, tom 31, (1965)’). See the first
scanned image below. The precise title of the second issue is "Visnyk of Kharkov
University, Number 14; Ser. Mechanics and Mathematics’ / ’"Communications of
Department of Mechanics and Mathematics and Kharkov Mathematical Society,
vol. 32, (1966)’ (original 'Bectauk Xapbkockoro yamsepcutera, Ne 14, Cepust
MeXaHUKO-MaTeMarndeckas’ / '3alicKu MEXaHUKO-MaTeMaTHIecKoro hakyabrera
u XapbKOBCKOIO MareMarndeckoro obmecrsa, ToM 32, (1966)’). The third issue
were numbered as 'Number 26/ volume 33, (1967)". After two years of break, the
publishing was continued with 'number/issue (year)’ way of numbering and no
reference to the Kharkiv Mathematical Society on the title page. It was 'number
53/issue 34 (1970)’. This way of numbering was used up to number 221 /issue 46
(1981)’. As we can see, the number of a volume was substituted by the number
of the corresponding issue. Unfortunately, starting 1982, the indication of ’issue’
(as previously 'volume’) was also interrupted and later continued with a gap.
The general numbering from 'number 230 (1982)’ to 'number 1133 (2014)” was
dropped as well starting 2015. It was not the decision of our editorial board, but
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the one of authorities of the University. As a result, preparing the current issue

we were faced to the question of how to indicate issues. In fact, all three ways
'volume /number /issue, (year)’ were discarded.

To make decision I revised a num-

T e g R ber of issues available in our library

to see the full evolution of the ti-

tle/number tradition. Some selected

titles and comments are presented

below.

BECTHMWK We briefly discussed above the
XAPbKOBCKOTIO history starting 1965. The issue
FOCY IAPCTBEHHOT'O dated 1964 was ’Scientific Com-

YHUBEPCHUTETA munications. Vol. CXXXVIII /
N Communications of Department

of Mechanics and Mathematics
and Kharkov Mathematical So-

CEPHSI MEXAHHKO-MATEMATHUYECKAS

3ATMCKH

MEXAHMKO-MATEMATHUYECKOTO ciety. Vol. XXX, Series 4 (1964)’
DAKYJIbTETA (original 'Vuensle 3zammcku. Tom
1 XAPbKOBCKOI'O MATEMATHUYECKOI'O CXXXVIIT / "BANUCKA MEXaHWKO-
OBEETha MaTeMaTUIecKoro (pakyabrera ¢
ki XapbKOBCKOTO  MATEMaTUIECKOTO
obmecrBa. Tom XXX, Cepus 4

(1964)).
Remark 2. As we described above,
it was rather typical to wuse two
subtitles for an issue. The men-
WBIATE/ECTBO tioned issue published in 1964 had
FOCYIAPCTBERHOTO YHIBEPCHTETA mms A M. 1OPKOL0 the first subtitle "Scientific Commu-

Xapbkos 1965
nications’. The sequence of issues

grouped under this subtitle was established in 1935. Initially issues of this group
were the mizture of papers from different disciplines. Later the group was split
into several specialized series.

Going back in time we see that the titles were changed several times but
the numbering (of the mathematical series) leads to Volume I dated by 1927.
To be precise the title is (original French/Russian) ’Communications de la So-
ciété mathématique de Kharkow. Série 4. Tome I. [Coobienusi XapbKOBCKOTO
maTeMaTndeckoro obmecrsa. Herseprast cepusi. Tom 1" |. See the second scanned
image below. Fortunately this issue (1927) contains the explanation what does
‘Série 4’ mean and when the journal was established. "The first series consti-
tute issues 1-18. 1879-1887. The second series constitutes volumes I-XV by 6
issues each and volume XVI by issues 1-2, 1887-1918. The third series is Scien-
tific Communications of research Chairs, mathematical department; under edi-
tion by S.M.Bernstein, I, 1924; II. 1926 and III (in press).” (original 'Tlepsyio
CEepUI0 COCTABJIAIOT BhImycK:m 1-18. 1879-1887. Bropyio cepuio coCTaBIsgioT TOM
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[-XV o 6 Bem. u XVI Boim. 1-2; 1887-1918. Tperneit cepueil aABIIOTCA Y UeHBIE
BAIMMCKHU HAYTHO-UCCJIEIOBATETHLCKIX KadeIp, OTIe MATEeMATHYIECKUN; MO PeJl.
C.M.Bepumrreitna, 1, 1924; II. 1926 u III (newaraercs)’). As a concluding remark
we could say that we currently continue the numbering of the fourth series (start-
ed in 1927), while the very first issue appeared in 1879 and was mainly connected
to the Kharkiv Mathematical Society and our University. Since 1879 the journal
contains a number of mathematical papers as well as several notes on the history
of Kharkiv University and Mathematical Society (see e.g., [1, 2]). It is difficult to
list all famous authors who published during 137 years history of the journal. We
just mention that the celebrated Stability theory has been originally published
by Alexander Lyapounov in a sequence of articles in our journal (see more de-
tails e.g., [4]). It was published in 1892 as a separate edition [3| by the Kharkiv
Mathematical Society (later in 1908, this edition was translated to French).

We should mention another mathematical journal published in Kharkiv "Jour-
nal of Mathematical Physics, Analysis, Geometry’ (formerly "Matematicheskaya
Fizika, Analiz, Geometriya’, 1994 - 2005). As our series, this journal continues the
publishing tradition of the Kharkiv Mathematical Society.

Our Editorial Board traditionally sends issues to many libraries. It is inter-
esting to note that the issue [5] in 1929 (Series 4, Vol.III) contains the list of 55
journals (Editorial Boards) which receive the printed Communications (43 jour-
nals are foreign).

More information one can find on the web-pages of our journal (currently
vestnik-math.univer.kharkov.ua). All recent articles (full-text) and some scanned
information on older issues are available there.

2. List of titles and editors

A. Below we list titles of mathematical journals/issues published by Kharkiv
University (in chronological order). These titles were originally written in Russian
or in French & Russian or in French & Ukrainian & Russian or in Ukrainian. Title
pages of almost all issues in 1879-1940 contain titles of the journal in French. In
issues where French titles are presented we do not translate them to English. We
do not claim that the list below is complete since not all issues are available to
check.

A1. 1879-1887. "Communications and protocols of meetings of the Mathemat-
ical Society at Imperial Kharkov University’ (original ’Coobiiienist u poTOKOJIBI
zacenaniit Maremarudeckaro obmecrsa npu Mmmeparopckomb XapbKOBCKOMb
Yuusepcurere’.

A2. 1887-1918. Original ’Communications de la Société mathématique de
Kharkow. 2-e série. Tomes I-XVI. [Coobmenist XapbKoBCKaro MareMaTHIeCKaro
obmecrsa. Bropast cepist. Toma I-XVI. |’

A3. 1927, 1928. Original ’Communications de la Société mathématique de
Kharkow. Série 4. Tomes I-II. [Coobiiennst XapbKOBCKOIO MaTeMaTHIECKOIO
obmecrsa. Yersepras cepusi. Toma I-11. |’
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A4. 1929-1932. Original ’Communications de la Société mathématique de
Kharkow et de l'Institute des sciences mathématiques de 1I’Ukraine. Série 4,
t.III. [3ammcku XapbKiBCbKOrO MATEMATHYHOIO TOBAPUCTBA Ta Y KPalHCHKOTO
IncTuryTy Mmaremarnunux Hayk. Cepia 4, 7. III. |".

A5. 1933. Original ’"Communications de la Société mathématique de Kharkow
et de l'Institute des sciences mathématiques et mécaniques de 1’Ukraine. Série
4, t.VI. [3anucku XapbKiBCbKOI0 MaTeMaTHIHOIO TOBAPUCTBA Ta YKPATHCHKOIO
HAYKOBO-/IOCJIITHOTO iHCTUTYTY MaremaTuku il Mexaniku. Cepis 4, 1. VL]

A6. 1934-1935. Original 'Communications de la Société mathématique
de Kharkow et de D'Institute des sciences mathématiques et mécaniques de
I"Université de Kharkoff. Série 4, t.VII-X. |3ammckn XapbKiBCbKOro MaTEMaTHIHOTO
TOBAPUCTBA Ta YKPAIHCLKOTO HAYKOBO-JOCTIHOTO 1HCTHUTYTY MATEMATHKHA I
MexaHiKi Ipu XapKiBcbkoMy JepkaBaoMy yuisepcureri. Cepis 4, 1. VII-X]'.

A'7.1936. Original ’"Communications de I'Institute des sciences mathématiques
et mécaniques de I’Université de Kharkoff et de la Société mathématique de
Kharkoff . Série 4, t. X I11. [3anuckn HayKOBO-J0CIIHOIO IHCTUTYTY MATEMATHKH
it MexaHiky mpu XapKiBCbKOMY J€pKABHOMY yHiBepcuTeTi Ta XapKiBChKOTO
maremaTuaHoro rosapucrsa. Cepis 4, 7. XII11]'.

AB8. 1938. Original ’"Communications de I'Institute des sciences mathématiques
et mécaniques de I’Université de Kharkoff et de la Société mathématique de
Kharkoff . Série 4, t.X V). [3anuckn HayKOBO-JIOC/IIHOrO iHCTUTYTY MATEMATHKH
it Mmexaniku i XapkiBcbkoro Maremarnanoro toapucrsa. Cepis 4, Tom X V]

A9. 1938, 1940, 1948-1950. Original ’Communications de I'Institute des
sciences mathématiques et mécaniques de !’Université de Kharkoff et de
la Société mathématique de Kharkoff. Série 4, t.XV,. [Bannckm nayuno-
HCCJIETIOBATETLCKOTO WHCTUTYTA MATEMATUKA W MEXaHUKH W XapbKOBCKOTO
maremaruydeckoro obmecrsa. Cepust 4, 1. X Va| .

1940: (the same title) Series 4, Vols. XVI-XVIII. 1948: (the same) Series 4,
Vol. XIX. 1949: (the same) Series 4, Vol. XXI. 1950: (the same) Series 4, Vols.
XX, XXII.

A10. 1956. ’Scientific Communications. Vol. LXV / Communications of
Mathematical branch of Department of Physics and Mathematics and Kharkov
Mathematical Society. Vol. XXIV, Series 4 (1956)’. (Original "Ytenble 3anmcku.
Tom LXV // Bamucku mMareMaTHiecKOTo OTJEICHUsT (PU3NKO-MATEMATHIECKOTO
dakyabrera n Xapbkosckoro maremarudeckoro obmecrsa. Tom XXIV. Cepust 47).

1957: (the same) Vol. XXV. Series 4. 1960: (the same) Vol. XXVI. Series 4.

A11. 1964. 'Scientific Communications. Vol. CXXXVIII / Communications
of Department of Mechanics and Mathematics and Kharkov Mathematical Soci-
ety. Vol. XXX, Series 4 (1964)’ (original "Yuensie 3amucku. Tom CXXXVIIT® /
"BalucKu MEXaHUKO-MaTEeMATUIeCKOTO (PaKyabTeTa U XapbKOBCKOI'O MATEMATH-
geckoro obmiecrBa. Tom XXX, Cepust 4 (1964)’).

A12. 1965-1967. 'Visnyk of Kharkov State University, Ser. Mechanics and
Mathematics’ / ’Communications of Department of Mechanics and Mathe-
matics and Kharkov Mathematical Society’ (original 'Bectank XapbKoBCKOTo
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rocyapcrBeHHoro yuusepeurera, Cepusi MexaHUKO-MaTeMaTndeckas’ / '3anucku
MEXaHUKO-MAaTEeMATHIECKOT0 (haKyibrera U XapbKOBCKOTO MATEMATHIECKOTO
obmecrsa’): Number 3 / Vol.31 (1965); Number 14 / Vol.32 (1966); Num-
ber 26 /Vol.33 (1967).

A13. 1970. "Visnyk of Kharkov University, Number 53, Ser. Mechanics and
Mathematics, issue 34’ (original 'Becrank XapbkoBckoro ynmsepcurera, Ne 53,
Cepusi MeXaHUKO-MaTeMaTHIeCKasl, BBILYCK 34”).

A14. 1973. 'Visnyk of Kharkiv University, Mathematics’ (original 'Becruux
XapbkoBckoro ynusepcurera, Maremarnka’). Number 93 / Issue 38 (1973).

A15. 1974-1976. "Visnyk of Kharkiv

University, Mathematics and
Mechanics’  (original ~ ’Bectauk
XapbKOBCKOT'O YHUBEPCUTETA,

Maremaruka n Mexanuka'). Issues:
Number 113 / Issue 39 (1974);
Number 119 / Issue 40 (1975);
Number 134 / Issue 41 (1976).

A16. 1982. ’Visnyk of Kharkiv
University, = Mechanics, Control
theory and Mathematics physics’
(original ’BectHuk XapbKOBCKOTO
yHEHBepcuTera, MexaHnka, Teopus
VIPaBJIEHUsST U  MaTeMaTHYeCKast
dbusuka’). Number 230 (1982).

A17. 1984. ’Visnyk of Kharkiv
University, Mechanics, Math-
ematics and Control pro-
cesses’ (original "‘BecTHuK
XapbKOBCKOT'O YHUBEPCUTETA,
Mexamnnka, MATEMATHKA U TPOIECCHI
yupasienusi’).  Number 254’84
(1984).

A18. 1985. *Visnyk of Kharkiv University, Control problems and Mechanics
of continuous media’ (original 'Becrauk Xapbkosckoro yausepcurera, [Ipobiembr
YUPaB/ICHHsT 1 MEXaHUKH CIIONHBIX cpef’). Number 277°85 (1985).

A19. 1989. 'Visnyk of Kharkiv University, Dynamical systems’ (original
'‘Becrnuk  XapbkoBckoro ynupepcurera, nnamuueckume cucrembr’). Number
334’89 (1989).

A20. 1977, 1978, 1979, 1980, 1981, 1991, 1992. ’Visnyk of Kharkiv Uni-
versity, Applied Mathematics and Mechanics’ (original 'Becrank XapbKoBCKOro
yHuBepcurera, [Ipukia/iHas MareMaTnka 1 MeXaHIKa').

Numbers / Issues : 148 / Issue 42 (1977); Number 174 / Issue 43 (1978);



58 A.V. Rezounenko

Number 177 / Issue 44 (1979); Number 205/ Issue 45 (1980); Number 221/ Issue
46 (1981); Number 361’91 (1991); Number 361’92 (1992).

A21. 1999. 'Visnyk of Kharkiv University, Ser. Mathematics, Applied Math-
ematics and Mechanics’ (original 'Bicauk Xapkiscbkoro yHisepcurery, Cepist
"Maremaruka, IpUKIaaHa MareMaTHKa 1 Mexanika'). Numbers : 444 (1999); 458
(1999).

A22. 2000-2003. ’Visnyk of Kharkiv National University, Ser. Mathe-
matics, Applied Mathematics and Mechanics’ (original 'Bicauk XapkiBcbkoro
HarioHaysibHOrO yHiBepcuTery, Cepist 'MaremaTnka, TpPUKJIaJHA MaTeMaTHKa i
mexanika’). Numbers : 475 (2000); 514 (2001); 542 (2002); 582 (2003).

A23. 2003-2015 (present). 'Visnyk of V.N.Karazin Kharkiv National Uni-
versity. Ser. Mathematics, Applied Mathematics and Mechanics’ (original
'Bicuuk XapkiBcbKoro HarionajpHOTO yHiBepcuTery imeni B. H. Kapasina, Cepis
"MaremaTuka, IPUKJIAHA MaTeMaTuKa 1 MexaHika’).

Numbers : 602 (2003); 645 (2004); 711 (2005); 749 (2006); 790 (2007); 826
(2008); 850 (2009); 875 (2009); 922 (2010); 931 (2010); 967 (2011); 990 (2011);
1018 (2012); 1030 (2012); 1061 (2013); 1081 (2013); 1120 (2014); 1133 (2014).

B. Editors-in-Chief starting 1964:

N.I. Akhiezer (1964, 1966, 1967, 1970-1975), A.V. Pogorelov (1965), I.E. Tara-
pov (1976-1982, 1984-1989, 1991, 1992), N.A.Khizhnyak (1983), V.I. Korobov
(1999-2015, present).

C. Associate Editors (members of Editorial Board) are indicated during
1964-2015:

N.I. Akhiezer (1964-1967, 1970-1975), V.V. Baranov (1976-1982, 1984, 1985),
Ya.P. Blank (1965), Borisenko A.A (1999-2015), Chudinovich I.Yu (1999-2010),
I.D. Chueshov (1999-2015), A. Dabrowsky (2011-2015), G.A. Dombrovsky (1992),
S.Yu. Favorov (1999-2015), Yu.V. Gandel (1999-2015), A.F. Grishin (1999-2014),
Yu. Karlovich (2011-2015), V.I. Korobov (1976-1982, 1984-1989, 1991, 1992,
1999-2015), Yu.l. Lubich (1976-1982, 1984, 1985, 1989, 1991), V.A. Marchenko
(1964-1967, 1973-1982, 1984, 1985, 1989, 1991, 1992), N.F. Patsegon (2003-
2015), A.V. Pogorelov (1964-1967, 1973-1975), A.V. Rezounenko (1999-2015),
A.G. Rutkas (1992, 1999-2015), G.M. Sklyar (1999-2015), V.A. Sherbina (1999-
2015), O.P. Soldatov (2011-2015), LE. Tarapov (1976-1982, 1984-1989, 1991, 1992,
1999-2002), A.A. Yantsevich (1970-1975, 1999-2015), Zolotarev V.O. (1999-2015).

D. Responsible Editors are indicated starting 1965: A.V. Pogorelov (1965),
N.I. Akhiezer (1966, 1967), A.A. Yantsevich (1970-1975), A.P. Marinich (1976-
1982, 1984-1989, 1991, 1992, 1999), L.D. Stepin (1983), A.V. Rezounenko (1999-
2015, present).

We should also mention the technical help in preparation of final (ready-to-
print) versions of issues provided by S.V.Dmitrieva (1999-2009) and N.V.Makarova
(2010-2015).

E. The total number of mathematical articles published during 1965-2015
is 704.
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F. The presence of abstracts: 1970-2015. The presence of abstracts in three
languages (English /Ukrainian /Russian): 2009-2015, present.

G. Full-texts PDF available online (open access): 2008-2015, present.

H. Indexed/Abstracted in Zentralblatt MATH: 1985-2015, present. Full title
in Zentralblatt MATH: "Visnyk Kharkivs'kogo Universytetu. Seriya Matematyka,
Prykladna Matematyka i Mekhanika". Short Title: "Visn. Khark. Univ., Ser. Mat.
Prykl. Mat. Mekh." Documents indexed: 317 publications since 1999. Predecessor:
"Vestnik Khar’kovskogo Universiteta" (documents indexed: 67 publications since
1985).

I. The print publication has been recorded permanently in the ISSN Register:
ISSN 2221-5646.

J. Current web-page: http://vestnik-math.univer.kharkov.ua,/ .
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IIpaBunia njs aBTOpiB
«BicHuka XapbKiBCbKOro HAaIiOHAJILHOIO yHIBEpPCUTETY
imeni B.H.Kapasina,
Cepis «Maremaruka, N1puKJIa/iHasi MaTeMaTuka i mexaHika»

Penakitist mpocuTh aBTOPIB Py HAIPABICHHI CTATE! KEPYBATHUCI HACTYTHIMHA
paBUJIaMHU.

1. B xypnrani nybinKyOThCcs CTarTi, 10 MAIOTh PE3YJbTaTH MaTeMaTHYHUX
JIOCJI1/I2KEHb.

2. IlpeacraBieHHaM CTATTI BBAXKAETHCS OTPUMAHHS PEJAAKINEI0 daitiis crarTi,
aHOTAaIIli, BIIOMOCTel PO aBTOPIB Ta apxira, 1o era04Yae LATEX ta PDF daiiim
cTaTTi Ta Qafan MATIOHKIB.

3. Pepaxiiia npuiiMae cTarTi yKpalHCHKOIO, POCIfICKOI0 800 aHT/IifiICHKOI0 MOBa-
mu. Crarrs mae 6yt odopmiena y pegakropi LATEX (Bepcig 2e). @aiin-3pa3ok
odopmieHHS CTATTI MOXKHO 3HAWTH B PEIAKINI KypHAJY Ta HA BeO-CTOpPIHIM
(http://vestnik-math.univer.kharkov.ua). Crarrss noBrHHA HOYHHATHCS 3 KOPOT-
kux aHoraiiii (ae 6inbire 10 cTpok), B gkux nouaHi OyTn 9iTKO chHOPMYIBOBaHI
ITb Ta pe3yabrarn poboTH. AHoTalii TOBUHHI OyTH TphOMa MOBaMuU (yKpaiHCh-
KO0, POCIHCKOI0 Ta AHT/IIHCHKO): MEPIIO MOBUHHA CTOATH AHOTAISA TIEK MOBO-
I0H, SKOI0 € OCHOBHUIT TekcT crarTi. B anoraril moBuHHi 6yTH TPU3BHUINA, iHIIHAIN
aBTOPiB, HA3Ba POOOTH, KJIIOUOB] CJI0BA, Mi?KHAPOIHA MaTeMaTHIHA KIacudikaris
(Mathematics Subject Classification 2010). AnoTarist He TOBUHHA MATH MOCHIAH-
Hsl Ha JITEPATypPy Ta MaIOHKH.

4. Tpukaamgm opOpMIEHHS CITUCKA JiTePATyPH:

1. JIamymos A.M. O6mast 3amada 06 yCTOWUMBOCTH TBUKEHUS. - XapbKOB: Xaph-
roBckoe Maremaruueckoe Obiectso, 1892. - 251 c.

2. Jlanynos A.M. O6 onnowm cBoiicTBe qudbpepeHnnaTbHbIX YPaBHEHUH 38491 O
JIBHZKEHUH TSXKEJI0r0 TBEP/Oro TeJla, MMEOIIero HenoasxkHyto 1ouky // Coob-
menust XapbkoBckoro mar. obmectsa. Cep. 2. — 1894. — T. 4. Ne 3. — C. 123-140.

5. Koxnwnit manoHOK moBHHEH OyTH NPOHYMEPOBAHWI Ta IIPEICTABICHUMN
okpemuM aitiiom B ogaomy 3 hopmaris: EPS, BMP, JPG. B daiiii crarti mastio-
HOK noBuHEeH OyTu BCrapaeruil apropom. Ilin mantonkoM moBuaer OyTy Iiiimuc.

6. BimomocTi mpo aBTOpiB MOBWHHI MICTUTH: NPi3BUIIa, iM’sl, 0 HATHKOBI,
cayx0oBa aapeca Ta HOMepa TeaedoHIB, agpeca eneKTporHol momTu. IIpoxaH-
Hd TAKOXK TOBITOMUTH TPI3BUINE aBTOPA, 3 AKUM Tpeba BECTH MePEeNuCKY.

7. PekoMmeHyeMO BHKODHCTOBYBATH OCTaHHI BHIYCKHM KypHasy ( vestnik-
math.univer.kharkov.ua/currentv.htm ) B sikocti 3paska odopmieHHs.

8. YV Buna Ky NOpYIeHHs MpaBuil opOPMIIEHHS PeJlaKiiid He OyJie PO3rsg aTu
CTATTIO.

Enextponna ckpunbka: vestnik-khnu@ukr.net

Enexrponna aapeca B Inrepreri: http: //vestnik-math.univer.kharkov.ua



