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A Banach space is sabd to have the big slice property if every slice of its unit
ball is of diameter 2. Let K be a metric space. We establish some necessary
and some sufficient conditions for the big slice property of the space Lip(K)
of all real-valued Lipschitz functions on K. In particular, Lip(K) has the
big slice property if K is an infinite compact space. In the case of finite set
K we find a characterization of extreme points of the unit ball of Lip(K).
2000 Mathematics Subject Classification 46B20.

1. Introduction

In this paper X stands for a Banach space, S(X) and B(X) are the sphere
and the closed unit ball of X. Every functional z* € S(X*) and € > 0 determine
a slice of B(X) by the formula

S(z*,¢) = {x € B(X) : z*(z) > 1 — ¢}

Recall [2] that X is said to have the (diameter-) big slice property (X € BSP)
if every slice of B(X) is of diameter 2. In the other words, for every ¢ > 0 and
every slice S of B(X) there are z and y in S such that ||z —y| > 2 —e.

For example, ¢y € BSP. Every space with the Daugavet property [3] also has
the BSP. If X has the Radon-Nikodym property, then it fails to have the BSP.
In particular, finite dimensional spaces never enjoy the BSP.

Throughout, (KX, p) stands for a metric space. For every pair of distinct points
t1,to € K we define the slope of a function f: K — R between ¢; and ¢ as

f(t2) — f(t1)
p(tl)t2) .

The space of all real-valued Lipschitz functions on K will be equipped with the
seminorm

f(t;t2) =

I £Il = sup{|f(t1;t2)|: t1 # t2 € K}

If one quotients out the kernel of this seminorm, i.e., the constant functions, one
obtains the Banach space Lip(K), whose norm will also be denoted by || - ||.
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It is known [4] that in the case of a compact space K the Daugavet property for
Lip(K) is equivalent to the locality condition on K. In this paper we investigate
the big slice property for spaces of Lipschitz functions.

In the following section, "Sufficient conditions for the big slice property of
Lip(K)", it turns out that on every (infinite) compact K Lip(K) satisfies the
big slice property. Moreover, this is also the case for every metric space which
contains arbitrarily close or arbitrarily distant points. In the last section we find
some necessary conditions for the big slice property of Lip(X).

An important tool to construct Lipschitz functions is McShane’s extension
theorem saying that if M C K and f: M — R is a Lipschitz function, then there
is an extension of f to a Lipschitz function F: X — R with the same Lipschitz
constant; see [L, p.\nobreakspace {}12/13]. This will be used several times.

. Remark, For a completion K of a metric space K Lip(K) = Lip(K),
consequently, we may assume without any loss of generality that K is a complete
metric space. '

We shall deal with the big slice property in the following equivalent form:

Lemma 1 X € BSP if and only if for every € > 0 B(X) is a subset of Z:B{—””—;—’-l :
z,y € (1+¢)B(X),llz -yl > 2—¢}.

Proof. Necessity is easily seen by the Hahn-Banach theorem. Let us prove the
sufficiency. Fix an ¢ > 0 and a slice S(z*,¢). Take a z € S(z*,d) with ¢ €
(0,£/6). Applying the condition, we get zy and yi in (1 + 8)-B(X) such that
llzx — yll > 2 — & and z is approximated by a convex combination

oS <

Then z*(3 ., M Z4e) > 2*(2) — 46 > 1 — 20 and consequently for some
j € {1,..,n} x*(f"%@-) > 1 — 2§. Hence, min{z*(z;),z*(y;)} > y2 ~ 46 —
* * * - ST e j
max{z*(z;),z*(y;)} 2246 —(1+6) =1-55. Let z = “—Iﬁ,-y = ﬂ?/j_ﬂ These
elements belong to S(a*,€) since min{z*(z), z*(v)} > 55 > 5= > 1-¢ Onthe
other hand, Jls—yl = 2y~ g1 2 lleg—usll=lles- (1= )i —llus- (1= )| >
2—8—2:(1+8)(1 - 5) =2— 35 >2—¢, as needed. 0

Observe that this lemma is still true even if the elements =, y are considered as
elements of B(X). Such pairs of elements will be used in the further conclusions
repeatedly. Let us fix a special notation for short:

Definition 1 For a pair of elements z,y € B(X) the ezpression 224 will be
called an e-arithmetic mean if ||z —y|| > 2 —¢.
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2. Sufficient conditions for the big slice property
of Lip(K)

The following technical lemma will be used. in this section several times.

Lemma 2 Assume that for every € > 0 there are two systems of points oty
{Tn}nz1 C K (write p(tn, ) = pn) and numbers Ry, > pp > vy > 0 with

2 2
8 s, e, & 1)

Rp—pn ~ Pn—Tn ~

and let the system of rings {B(tn, Rn)\B(tn,mn)}, be disjoint. Then Lip(K)
has the big slice property.

Proof. Let us show that the condition of lemma 1 is satisfied. Take any £ > 0 and
f € B(Lip(K)). For every k € N define

zk(t) = f(t) when t & B(ty, Ri)\B(tk, k)

Besides, take zy(7x) = f(tx) + pk. So, zx(+) is defined on a subset of K. Let
us estimate the norm |lzx|| = sup|zk(¢; 7)|. There are three possibilities on the

disposal of ¢, 7.
If neither £ nor 7 equals 7%, then |zx(t;7)] = |f(¢;7)] < ||f]] € 1. Let one of
the points, say 7, be 7, and assume ¢ € B(¢g, Rx). Then

. _Nf @) + o = f()] _ N Fll-p(E, k) + px
b= e = pliad

Sp(taTk)+29k 2 20k <l+e
p(t, 7¢) Ry — px

In the last case let 7 = 7, t € B(tg,7%). Then again

. 2
£ 1l-o(t, t) + ok S TRIOE oy o AT ey
p(t, x) Pk — Tk Pk — Tk

lzp(t;7)| <

So, |lzkll < 1+¢. Extend zy to a function on K preserving the Lipschitz constant,
still denoted by ;. Build yx(t) by the same scheme with yx(7x) = f () —
This results in the following inequality:

(2 = k) (1) — (@ — yk) (tr) _ 20k _ 9.
p(tk)Tk) Pk

llzk — yxll >
Now take any n € N and observe that the last sum of

-2 = v - 2
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is nonzero only in the rings B(tx, Rx)\B(tx, 7)., where it takes the values of the
corresponding summands. Therefore,

n
1 o + 2:.(1 4
-5 iagmcineseen g
el 2 n n
k=1
as n. — 00. So, [ is approximated by convex combinations of elements of the form
224 as we needed for lemma 1. Lip(K) € BSP. O

Now we are able to establish the sufficient conditions on K for the big slice
property of Lip(K) which were announced above.

Theorem 1 If inf{p(t,7):t# 7€ K} =0, then Lip(K) € BSP.

Proof. For every ¢ > 0 we shall construct a system of points satisfying the
condition of lemma 2. Take distinct points ¢, and 7, (write p(tn,7,) = pn) such
that p, — 0. Define R,, and r, by

20n, 25

e e
Ry, —pn ’ Pn = Tn

and observe that these values also tend to zero.

Now in connection with the structural properties of the system of sets
B(t,, Rn) we have to split two opposite cases. Let us consider the first one: assume
that for every subsequence {tx}rer C {tn} @ ko € I can be found such that only
finite set of indices k € I give

p(trostr) < Riy + Ri-

Then the following inductive procedure provides us with the required subsequence.
Applying the assumption, take t}cl € {tn}3%; and sufficiently large n; > k1 such
that p(tx,,tr) > Ry, + Ry for any k > ny. Then take ¢, € {tn}nen,+1 2and ng 2 kg
such that p(tg,,tx) > Rk, + R for all k& > ny. Continuing in this manner; we
build a subsequence {t, ,k,,- .. } satisfying for all i # j

-

p(tk,'atkj) > Rka‘ o Rkj‘

It obviously implies that the system of rings B(tk,, Rk, )\B(tk,, Tk, ) 18 disjoint.
The condition of lemma 2 is satisfied, hence, Lip(K) has the big slice property.

Consider the second case: let N C N be an infinite subsequence such that
every n € N defines an infinite N, C N giving for all k£ € Ny,

p(tn, tk) < Rn + By (2)

By the infinity of N and since R,, — 0 we can find n; € N such that the condition
(2) for all k € Ny, holds simultaneously with the inequality Rn, < 1/2. Since Np,
is also infinite, it contains an ng also satisfying (2) for all k € Ny, simultaneously
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with R,, < 1/4. Further, by the infinity of Np, it contains n3 such that for all
k € Np, (2) holds together with R,, < 1/8. Continuing in this manner, we find
an infinite sequence t,, . This sequence is fundamental because

[)(tnk,tnp) < (Rnk = Rnk-H) i (Rnk+g e B/nk+2) Amsiscezfe (Rﬂp_1 + Rn,,)

2 2 2 1

<§7+W+"'+§F—T<§F§'—>O

as k — oo. Since K is a complete space, t,, converges to some t € K. Thereby,
the simplest way to obtain a disjoint system of rings is to pass to a system
having a common center in the point ¢. Let 74 be an arbitrary element ¢, ; write
g4 = p(t,7]) and take R; and 7] such that the inequalities (1) for these values
hold. Define a ring B} = B(t, R})\B(t,r}). In order to define the next ring take
any positive Ry < 4 and k such that p(t,t,,) = o4 satisfy (1) together with
sufficiently little rh. Write 74 == t,, and By = B(t, R,)\B(t,r5). Continuing this
process, we obtain a sequence of disjoint rings as needed in lemma 2. Lip(K') has
the big slice property. O

Sorollary 1 For a compact space K Lip(K). has the BSP if and only if K 1s
infinite.

Theorem 2 If K is unbounded , i.e., sup{pt,7): t # 7 € K} = 00, then
Lip(K) € BSP.

Proof. The unboundedness condition implies that for every t € K and everyr >0
there is 7 € K such that p(¢,7) > r.

Given an € > 0, we build again a system of rings in order to apply lemma
9 Take any t € K and write &, = t; also take any 71 > 0. Applying the
unboundedness of K, find 1, € K (write p(t1,71) = p1) and By >0 such that the
inequalities (1) hold for n = 1. Then writerg = R1 and find 7 € K (p(t2, 72) = p2)
and Ry > 0 such that the inequalities hold for n = 2. Continuing similarly, we
build a disjoint sequence of rings B(tn, Bn)\B (tn,Tn). Lemma 2 can be applied;

Lip(K) has the big slice property. o

Consequently, the cases when Lip(XK) fails the BSP are contained in the
cases of spaces K such that the "limiting distances"sup p(t, 7) and tl;lf_ p(t, 7) are
t#

2
bounded from both zero and infinity. But even in this case Lip(X) may have the
big slice property.

Ezample. Let K be an arbitrary infinite set. Introduce the metric p on K by
taking p(t,7) = C > 0 for all ¢t # 7. Then Lip(K) has the big slice property.
Proof. p(t,7) is constant for all ¢ # 7, so we may assume that C = 1. Fix
an f € B(Lip(K)) and write ag = infg f(t). Now take any disjoint sequence
ty, 71, tz, 72, - € K and define for all indices %

vp(te) = o, zk(7h) =ao+1, and zi(t) = f(t) for t & {tk, Tk}
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Correspondingly,
yk(ty) =g+ 1, yr(mk) = o, and yi(t) = f(¢) for the rest of K.

Obviously, z; and y; lie in B(Lip(K)) and ||zx — yk|| = 2. Moreover, f is
approximated by convex combinations of elements ﬂ‘dz'—y&:

- S-S 2m 2 o

as we needed to apply lemma 1. O

A less trivial example can be constructed by means of discrete subsets of [
Define for a natural n

B 25 Fliteyity o) B b s 8l 508 {Liorin i) B

If n =2, K is a discrete metric space like in the example above, so Lip(K) €
BSP.

If n = 3, the space Lip(XK’) again possesses the big slice property, but the proof
becomes much more complicated.

Question. Does Lip(K) have the big slice property for spaces K of the form

(3) with any n?

3. Necessary conditions for the big slice property of Lip(K)

Theorem 3 Under the following condition on K Lip(K) fails the BSP:
There is an f € S(Lip(K)), a sequence {t1,81,...,tm,Sm} € K with
fltizs) =1 fori=1,...,m, and an € > 0 such that every e-arithmetic mean

£2U satisfies for some i
; T+y
2 -

Proof. Assume to the contrary that Lip(K) € BSP. Then we can approximate f
by a convex combination of some ;= -arithmetic means:

= Tk + Yk |
pr—Bee ] 2
k=1

(t’l)sl) < 1 — g

In particular,

4] n
> (f -3 A T yk) (ti; i) = fts; 85) — Ny TE B sy,
k=1 2 k=1

2
m
Consequently,
T + &
Z/\k —'g—‘%(% sl (4)
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On the other hand, by assumption on {#;, s;}, for every k there is an 7 such that
Tk + Yk
2

For every i define A; as the set of all indices k for which (5) holds write o; =
Zk,_ i /\k Observe that among the «;'s there is at most one ;, 2 = (otherwise
= N e & Y k=1 Ak = 1). Therefore,

Z/\ BB () < 30 Mell—9)+ Y Al

k€A;, kg Aiq

_Z,\k—e > )\k<1——

k€A;,

(ti;si) <l-e. (5)

which contradicts (4). 0

Remark. Observe that there is no need to define the function f on
the whole space K. All conditions on f, in fact, refer to the properties of

Lip(161: 815 5+ by Sm b )
This idea is developed in the following theorem 4.

Theorem 4 Under the following condition on K Lip(K) fails the BSP:
There is an € > 0, a finite subset M C K, and an extreme point f of
B(Lip(M)) such that every e-arithmetic mean ?—;'—y of Lip(K) satisfies

z+Yy

e -
”f M ” Lip(M)

In order to prove this theorem we establish a characterization of extreme
points of B(Lip(M)) at first.

Lemma 3 Let M be a finite metric space, f € B(Lip(M)). f is an extreme point
of B(Lip(M)) if and only if for every pair of distinct points t,7 € M there is a
sequence Sg,...,8n € M with so = t, s, = 7 such that |f(si-1;8:)| = 1 for all
=t oW

Proof. We prove sufficiency at first. Assume that f = -‘%ﬂ for some g,h €
B(Lip(M)) and let us prove that g = f = h. It suffices to prove that g(t;7) =
f(t;7) for all t,7 € M. Let g(t;7) # f(¢;7) and find the corresponding sg, . . . , $u.
Since
n
D F=9)s0) = (F = 9)si-1)] = (F = 9)(r) = (f = 9)(®) #0,

=1

9(8i-1;8:) # f(si-1;8;) = %1 for some ¢. Denote s;,—1 and s;, as s, s’ in such order
that f(s;s’) = +1. Then g(s;s') < 1, since ||g|| < 1. Therefore, by the equality
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f =2 h(s;s') > 1 and hence ||h]| > 1, which is not possible. Consequently,
g(t;7) = f(t; 7). f is an extreme point.

In order to prove the necessity assume that for some ¢ # 7 € M the condxtlon
is not satisfied. Consider the set

A = {7}U{s € M : there are s=sq, S1,...,p=T With |f(si-1;8:;)| = 1 Vi}.
A # M, since t € A. Define
oy =sup{a > 0: ||f + xaal <1},
=inf{a <0: ||f + xa-al < 1}.

Observe that a; # 0. Indeed, otherwise for every o > 0 ||f + xa-afl > 1, ie,

I(f + xa-@)(u;s)] > 1 for some u & A, s € A. Passing to the limit as @ — 0 and

applying the fact that M is finite, find u ¢ A and s € A such that |f(u;s)| =

But it means that u € A, which is a contradiction. By the same argument ap # 0.
Then, for o = min{|ayg|, 1|} > 0

If + xaall <1and ||f — xacf <1.

This implies that f is not am extreme point of B(Lip(M)), because [ =
f+XA'C‘§'f‘XA'a. ]

Proof of theorem 4. Denote r = infas p(t,7) > 0, R = supy, p(t 7) < 00. The
theorem will be proved by applying theorem 3. Let ’—”ﬂ be any iy -arithmetic
mean. In particular, it is also an e-arithmetic mean, so by the condmon there are

s,s' € M such that

z+ T +
(- 586 - (- 552) @) > enlsrs) > e (6)
Applying lemma 3 find in M so=s, s1,...,8,=s' such that [f(si-1;s;)| = 1 for
every i = 1,...,n. We may also assume that s; # s; when i # j, son < |M|.

Let us show that for some 49 € {1,...,n}
@ty (Y e
1§ i~ )(3’0‘1)| ik

Otherwise
(- =52)0- (-0 s £ 5200~ (-2
< nl%% < [Ml-% =g,

which contradicts (6). Denote s;,~1 and s;, as t, 7 in such order that f(¢;7) = +1.

Then i n
i < (- - (-0
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& T +yY

= plt, |1 (6m) = TF (k57| < Rj - T ().
And hence %
z+y er
s MU N s s
2 (’T)<1 |M|’R’ (7)
as we needed to apply theorem 3. Lip(K) fails the big slice property. O

Let us construct an example of a space Lip(K) ¢ BSP on the base of theorem
4.
At first we have to establish some general properties of e-arithmetic means.
Consider an e-arithmetic mean ££%. Since ||z — y|| > 2 — ¢, there are a,b € K
such that
2—¢e < (z—y)(a;b) = z(a; b) — y(a; b).

Therefore,
z(a;0) > 2 —e+y(a;b) > 1 —¢g; (8)
y(bja) >2—e—z(a;b) > 1—e. (9)
Finally,
c+y, . _ zlash)+ylah) 1—(1-¢) ¢
5 (a;b) = 5 < 5 =3 (10)

Ezample. Define the sets M = {¢t,7}, K = M U {s1, s2,... } and the metric p
which takes the following values on K:

ol r) =2, plen,si) =1 p{.8)=plT.9n)=1

for all numbers n, k. The function f will be defined on M as

Now, let £¥ be an arbitrary e-arithmetic mean. Let us show that & < [(f —

BN )| =1 ()| =1- %‘y(t}ﬂ’ iy bt
z+y T4y _
5 st g ) Y i)

Take any of the elements a,b € K providing (z — y)(a; b) > 2 — €. There are tree
cases on their disposal.
In the first case assume that both @ and b lie in {s;, s2,... }. Then

50 = 50 = 3 (50) ~ 20+ v - 4(0)

= 5+ (1) =5(0) +0(0) ~o(0)+2(8) ~a(0) +3(7) ~y () +10)~y(@) +1(@)~3()),

and due to the inequalities (8) and (9)

S%-(1——1+£+1+1—1+6+1)=1+6<2—25
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if e < 1/3. In the second case let a € M, b € {s1,32,...} (or contrariwise). Then
by the triangle inequality and equation (10)

z+y
2

z+y, . z+y
5 ()3

(ﬂ<§4+” “4=1+5<2—%

2
if ¢ < 2/5. In the last case a = ¢, b = 7 (or contrariwise). Then by the equation
(10)

z+y sty €
5 (1) 5 (t)<2<2 2¢

if £ < 4/5. In any case we may apply Theorem 4 deducing that Lip(K) fails the
big slice property.
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