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We obtain the stability theorem for unconditional Schauder decompositions
in Hilbert spaces. This result is a generalization of the classical theorem
of T. Kato on similarity for sequences of projections in Hilbert spaces to
the case of unconditional Schauder decompositions. Also we sharpen one
theorem of V.N. Vizitei on the stability of Schauder decompositions in the
case of unconditional Schauder decompositions.
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1. Introduction
In 1940 came the publication of the work [14], dedicated to the well known

S. Banach's problem � basis problem. In this paper an abstract theorem of
stability of arbitrary bases in Banach spaces was �rst obtained. One of the main
consequences of this Krein-Milman-Rutman theorem says that, in any Banach
space with a basis, a basis may be formed from arbitrary dense set. In the
present time this theorem has many generalizations, analogs and applications,
see, e.g., [15, 23]. In 1951 N.K. Bari [3] opened the topic of the stability of bases,
introduced the term and studied the properties of Riesz basis, and showed, inter
alia, that any minimal system, quadratically close to the Riesz basis, is itself a
Riesz basis.

The concept of Schauder decomposition (or basis of subspaces) is a natural
generalization of the Schauder basis concept and was �rst introduced in 1950 by
M.M. Grinblyum in [10]. In the same year, independently, M.K. Fage in [7, 8]
proposed and studied this concept in Hilbert spaces. In 1960 A.S. Marcus
generalize some results of N.K. Bari to the case of unconditional Schauder
decompositions and, using the results obtained, establish certain conditions under
which a dissipative operator has Bari basis of root subspaces, and the union of
orthonormal bases from these subspaces forms Riesz basis or Bari basis, see [17].

Nowadays, Schauder decompositions together with Schauder bases are
powerful tools of functional analysis and in�nite dimensional linear systems
theory, see [6, 20, 21, 22, 27]. About Schauder decompositions see, e.g.,
[15, 24, 4, 9].

Throughout what follows H will denote a Hilbert space with norm ‖ · ‖ and
a scalar product 〈·, ·〉, and Z+ will denote a set of nonnegative integers. In 1967
T. Kato published the following result.

Theorem 1 (T. Kato [13]) Suppose that {Pn}∞n=0 is a sequence of nonzero
selfadjoint projections in H satisfying

∞∑
n=0

Pn = I, PnPm = δm
n Pn for n, m ∈ Z+,

and let {Jn}∞n=0 be a sequence of nonzero projections in H, such that JnJm = δm
n Jn

for n,m ∈ Z+. Also assume that

dimP0 = dimJ0 = m < ∞, (1)
∞∑

n=1

‖Pn(Jn − Pn)x‖2 ≤ c2‖x‖2 for all x ∈ H, (2)

where c is a constant satisfying 0 ≤ c < 1. Then {Jn}∞n=0 is similar to {Pn}∞n=0,
that is, there exists an isomorphism S, such that Jn = S−1PnS for n ∈ Z+.

This result gave a new impetus to the development of the spectral theory. It
is an e�ective tool for the analysis of spectral properties of various perturbations
of operators in H and even 45 years later retains its relevance. In 1968
C. Clark [5] applied Theorem 1 to the study of spectral properties of relatively
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bounded perturbations of ordinary di�erential operators. In 1972 E. Hughes [11]
used Theorem 1 in the proof of some perturbation theorems for relative
spectral problems. T. Kato in [12] considered the problem of completeness of
eigenprojections for slightly nonselfadjoint operators as a perturbation problem
for selfadjoint operators and based the solution of this problem on his Theorem 1.

In 2012 J. Adduci and B. Mityagin applied Theorem 1 to the study of
eigenfunction expansions of the perturbed harmonic oscillator L = − d2

dx2 +x2+B,
B = b(x), with dense domain in L2(R) [1], and to the analysis of the perturbation
A = T + B of a selfadjoint operator T in a Hilbert space H with discrete
spectrum [2]. Just recently, Theorem 1 was applied by B. Mityagin and P. Siegl to
the study of the root system of singular perturbations of the harmonic oscillator
type operators [18].

The purpose of the present paper is the study of stability of unconditional
Schauder decompositions in Hilbert spaces. More precisely, the aim is to generalize
Theorem 1, considering unconditional Schauder decompositions instead of
orthogonal Schauder decompositions. It was found that the sequence of subspaces,
corresponding to mutually disjoint projections, which are close in a certain sense
to projections of unconditional Schauder decomposition of given structure, is itself
an unconditional Schauder decomposition. As a direct consequence of this result
we obtain one stability theorem for Riesz bases of su�ciently general structure
in H. Also we sharpen one theorem of V.N. Vizitei on the stability of Schauder
decompositions, which was published in [25], in the case of unconditional Schauder
decompositions in H.

2. One lemma on unconditional Schauder decompositions in H

Throughout the paper we will use the following de�nitions.

De�nition 1 ([24]) A sequence {Mn}∞n=0 of closed nonzero linear subspaces of
H is called a Schauder decomposition of H provided each x ∈ H has a unique,
norm convergent expansion x =

∞∑
n=0

xn, where xn ∈ Mn for n ∈ Z+.

De�nition 2 ([24]) A Schauder decomposition {Mn}∞n=0 of H is called 2-
Besselian provided the convergence of

∞∑
n=0

xn in H, where xn ∈ Mn, n ∈ Z+,

implies the convergence of
∞∑

n=0
‖xn‖2.

De�nition 3 ([24]) A pair of sequences ({Mn}∞n=0, {Pn}∞n=0), where
{Mn}∞n=0 is a sequence of closed nonzero linear subspaces of H and {Pn}∞n=0 is
a sequence of bounded linear projections satisfying PnH = Mn for all n, will
be called a generalized biorthogonal system provided it satis�es PiPj = δj

i Pi for
i, j ∈ Z+. The generalized biorthogonal system ({Mn}∞n=0, {Pn}∞n=0) is said to be
H-complete, if Lin{Mn}∞n=0 = H.
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De�nition 4 ([24]) A sequence of nonzero subspaces of H is said to be ω-linearly
independent, if the relations

∞∑
n=0

xn = 0, xn ∈ Mn, n ∈ Z+, imply xn = 0, n ∈ Z+.

De�nition 5 A Schauder decomposition {Mn}∞n=0 will be called unconditional
with constant M provided there exists M ≥ 1 such that∥∥∥∥∥

n∑

i=0

δiyi

∥∥∥∥∥ ≤ M

∥∥∥∥∥
n∑

i=0

yi

∥∥∥∥∥ for all n ∈ Z+, yn ∈ Mn, {δi}n
i=0 ∈ {0, 1}.

For example, every orthogonal Schauder decomposition in H is unconditional with
constant M = 1. The following lemma provides some properties of unconditional
Schauder decompositions in H and will be used further.
Lemma 1 Assume that {Mn}∞n=0 is an unconditional Schauder decomposition in
H with constant M and corresponding sequence of projections {Pn}∞n=0. Then for
every x ∈ H we have

1
2M

( ∞∑

n=0

‖Pnx‖2

) 1
2

≤ ‖x‖ ≤ 2M

( ∞∑

n=0

‖Pnx‖2

) 1
2

. (3)

Proof. We note that, by the parallelogram identity, for each x ∈ H and for every
�nite set of elements {Pjx}n

j=0 ⊂ H there exists a set of numbers {εj}n
j=0 ⊂

{−1, 1} such that
∥∥∥∥∥∥

n∑

j=0

εjPjx

∥∥∥∥∥∥

2

= min
εj=±1

∥∥∥∥∥∥

n∑

j=0

εjPjx

∥∥∥∥∥∥

2

≤ 1
2n+1

∑

εj=±1

∥∥∥∥∥∥

n∑

j=0

εjPjx

∥∥∥∥∥∥

2

=
n∑

j=0

‖Pjx‖2.

(4)
Construct the following operators: P+

n =
∑

j:εj=1
Pj , P−

n =
∑

j:εj=−1
Pj . Further,

applying (4), we obtain that

‖x‖2 =


 lim

n→∞

∥∥∥∥∥∥

n∑

j=0

Pjx

∥∥∥∥∥∥




2

=
(

lim
n→∞

∥∥(
P+

n + P−
n

)
x
∥∥
)2

= lim
n→∞

∥∥(P+
n − P−

n )2x
∥∥2

≤ 4M2 lim
n→∞

∥∥(P+
n − P−

n )x
∥∥2 = 4M2 lim

n→∞

∥∥∥∥∥∥

n∑

j=0

εjPjx

∥∥∥∥∥∥

2

≤ 4M2
∞∑

j=0

‖Pjx‖2.

Hence, a right-hand side of the inequality (3) is proved.
To prove a left-hand side of the inequality (3) we observe that, by the

parallelogram identity, for each x ∈ H and for every �nite set of elements
{Pjx}n

j=0 ⊂ H there exists a set of numbers {εj}n
j=0 ⊂ {−1, 1} such that

∥∥∥∥∥∥

n∑

j=0

εjPjx

∥∥∥∥∥∥

2

= max
εj=±1

∥∥∥∥∥∥

n∑

j=0

εjPjx

∥∥∥∥∥∥

2

≥ 1
2n+1

∑

εj=±1

∥∥∥∥∥∥

n∑

j=0

εjPjx

∥∥∥∥∥∥

2

=
n∑

j=0

‖Pjx‖2.

(5)
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Further, for every set of numbers {εj}n
j=0 ⊂ {−1, 1} there exist two sets of numbers

{δ+
j }n

j=0 ⊂ {0, 1} and {δ−j }n
j=0 ⊂ {0, 1} such that

∥∥∥∥∥∥

n∑

j=0

εjPjx

∥∥∥∥∥∥
=

∥∥∥∥∥∥

n∑

j=0

δ+
j Pjx−

n∑

j=0

δ−j Pjx

∥∥∥∥∥∥
≤ 2M‖x‖.

Taking into account (5), we obtain
∞∑

j=0

‖Pjx‖2 = lim
n→∞

n∑

j=0

‖Pjx‖2 ≤ 4M2‖x‖2,

which completes the proof of left-hand side of (3).
The lemma just proved is a slight variation of one lemma from [16, 26]. Note

that Lemma 1 without speci�cation of the constants in (3) follows from one lemma,
which was obtained by W. Orlicz in [19]. Lemma 1 leads to the following remark
of geometric nature.

Corollary 1 Let Schauder decomposition {Mn}∞n=0 in H is unconditional with
constant M and corresponding sequence of projections {Pn}∞n=0. Then every x ∈ H

is contained outside the open ball B
(

0, 1
2M

( ∞∑
n=0

‖Pnx‖2

) 1
2

)
and inside the closed

ball B

[
0, 2M

( ∞∑
n=0

‖Pnx‖2

) 1
2

)
of the space H, i.e. in the closed ring.

3. Theorem of V.N. Vizitei and unconditional decompositions in H

Lemma 1, together with Theorem 15.17 from [24], which was obtained by
V.N. Vizitei in 1965 [25], allow us to obtain the following stability theorem,
which is valid for every unconditional Schauder decomposition in H. Thereby,
we sharpen a theorem of V.N. Vizitei in a following way.

Theorem 2 Assume that {Mn}∞n=0 is an unconditional Schauder decomposition
in H with corresponding sequence of projections {Pn}∞n=0. Then the following
statements hold.

(i) There exists a constant λ ∈ (0, 1), such that every sequence of subspaces
{Nn}∞n=0 in H satisfying

( ∞∑

n=0

θ (Mn, Nn)2
) 1

2

≤ λ, (6)

where θ (M,N) = max

{
sup

x∈M,‖x‖=1
dist(x,N), sup

y∈N,‖y‖=1
dist(y, M)

}
is the ope-

ning of the subspaces M, N, is a Schauder decomposition in H, isomorphic to
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{Mn}∞n=0. Moreover, a constant λ may be chosen as

λ =


4 sup

0≤n<∞

∥∥∥∥∥∥

n∑

j=0

Pj

∥∥∥∥∥∥

(
1 + sup

0≤n<∞
‖Pn‖

)2


−1

.

(ii) Every sequence of subspaces {Nn}∞n=0 in H, satisfying
∞∑

n=0

θ (Mn, Nn)2 < ∞, (7)

and admitting a sequence of projections {Jn}∞n=0, such that ({Nn}∞n=0, {Jn}∞n=0)
is an H-complete generalized biorthogonal system, is 2-Besselian Schauder
decomposition of H. If, additionally, dimMn < ∞, n ∈ Z+, then the same
conclusion holds for every ω-linearly independent sequence of subspaces {Nn}∞n=0

satisfying (7).

Note that every sequence of subspaces {Nn}∞n=0, isomorphic to unconditional
Schauder decomposition {Mn}∞n=0 with constant M , is itself an unconditional
Schauder decomposition with constant M‖S‖‖S−1‖, where Nn = SMn, n ∈ Z+.

4. A generalization of a theorem of T. Kato
The main result of the paper is formulated as follows.

Theorem 3 Let {Nn}∞n=0 is an orthogonal Schauder decomposition in H with
corresponding sequence of projections {Fn}∞n=0, where dimF0 < ∞, and assume
that {Mn}∞n=0 is an unconditional Schauder decomposition in H with constant M
and corresponding sequence of projections {Pn}∞n=0, where P0 = F0. Also suppose
that {Jn}∞n=0 is a sequence of nonzero projections in H such that JnJm = δm

n Jn

for n,m ∈ Z+. If the condition (1) holds and for all x ∈ H we have
∞∑

n=1

‖Pn(Jn − Pn)x‖2 ≤ ς2‖x‖2, (8)

where ς ∈ [
0, 1

2M

)
, then {JnH}∞n=0 is also an unconditional Schauder decomposi-

tion in H, isomorphic to {Mn}∞n=0.

Proof. To prove the theorem we use the method which was used in [13]. Consider
the operator S de�ned on H by

S =
∞∑

n=0

PnJn. (9)

To prove the existence of S in the strong sense we show that
∞∑

n=0

(Pn − PnJn) =
∞∑

n=0

Pn (Pn − Jn)
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converges in the strong sense. Indeed, since {Mn}∞n=0 is an unconditional Schauder
decomposition in H with constant M , for each x ∈ H and for every N ∈ Z+ we
have by virtue of Lemma 1, using (8), that

∥∥∥∥∥
k+N∑

n=k

Pn (Pn − Jn) x

∥∥∥∥∥

2

≤ (2M)2
∞∑

j=0

∥∥∥∥∥Pj

(
k+N∑

n=k

Pn (Pn − Jn) x

)∥∥∥∥∥

2

=

= (2M)2
k+N∑

n=k

‖Pn (Pn − Jn) x‖2 → 0,

when k →∞. Hence,
∞∑

n=0
Pn (Pn − Jn) x converges and, consequently, the series

∞∑

n=0

PnJnx =
∞∑

n=0

Pnx−
∞∑

n=0

Pn (Pn − Jn) x

also converges. Consider the operator

R =
∞∑

n=1

Pn (Pn − Jn) = I − P0 −
∞∑

n=1

PnJn

and note that ‖R‖ < 1, since for every x ∈ H,

‖Rx‖2 =

∥∥∥∥∥
∞∑

n=1

Pn (Pn − Jn) x

∥∥∥∥∥
2

≤ (2M)2
∞∑

j=0

∥∥∥∥∥Pj

( ∞∑

n=1

Pn (Pn − Jn) x

)∥∥∥∥∥
2

=

= (2M)2
∞∑

n=1

‖Pn (Pn − Jn) x‖2 ≤ (2M)2 ς2‖x‖2,

by virtue of Lemma 1 and applying (8). Further observe that, since

S = P0J0 + I − P0 −R, ‖S‖ < ‖J0‖+ 3 < ∞.

Thus, a theorem will be proved if we show that S is continuously invertible.
To this end we consider the operator

S̃ =
∞∑

n=1

PnJn = I − P0 −R. (10)

Since dimP0 = m < ∞ by (1) we have that (I − P0) is Fredholm operator with

nul (I − P0) = m, ind (I − P0) = 0, γ (I − P0) = 1,

where nul T denotes the nullity, indT the index, and γ (T ) the reduced minimum
modulus, of the operator T (for these notions see, e.g., [12], Chapter IV, §5.1).
Indeed, �rst we note that nul (I − P0) = dimP0 = m,

def (I − P0) = dimH|Im(I−P0) = dimH|
Im(I−P0)

=
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= dim co ker (I − P0) = dim (Im (I − P0))
⊥ = m,

ind (I − P0) = nul (I − P0)−def (I − P0) = 0, where defT denotes the de�ciency
of T , see, e.g., [12, 4]. Second, since {Fn}∞n=0 is a sequence of orthoprojections
corresponding to orthogonal Schauder decomposition {Nn}∞n=0, where P0 = F0,
we have that

inf
v∈ker(I−P0)

‖x− v‖ = inf
v∈ImF0

( ∞∑

n=0

‖Fn(x− v)‖2

) 1
2

=

=

( ∞∑

n=1

‖Fn(x− F0x)‖2

) 1
2

=

( ∞∑

n=0

‖Fn(x− F0x)‖2

) 1
2

= ‖(I − P0)x‖.

Consequently, γ (I − P0) =

= sup

{
γ : ‖ (I − P0) x‖ ≥ γ inf

v∈ker(I−P0)
‖x− v‖, x ∈ D (I − P0) = H

}
= 1.

Furthermore, since ‖R‖ < 1 = γ (I − P0), S̃ = (I − P0)−R is also Fredholm
with

nul S̃ ≤ nul (I − P0) = m, ind S̃ = ind (I − P0) = 0 (11)
(see [12], Chapter IV, Theorem 5.22). Since S = P0J0+ S̃, where P0J0 is compact,
S is also Fredholm and ind S = ind S̃ = 0 (see [12], Chapter IV, Theorem 5.26).
Therefore we obtain that nul S = def S, and S will be invertible if and only if
nul S = def S = 0. Thus it is su�cient to show that nul S = 0. To this end we
�rst show that

ker S̃ = ImJ0. (12)

If x ∈ ImJ0, i.e. x = J0y, then S̃x = S̃J0y =
∞∑

n=1
PnJnJ0y = 0 and, consequently,

x ∈ ker S̃. On the other hand, ker S̃ ⊂ ImJ0, since ker S̃ and ImJ0 are linear
subspaces, dim ImJ0 = m and dimker S̃ ≤ m by (11). Assume now that x ∈ kerS.
Then,

0 = P0Sx = P0

∞∑

n=0

PnJnx = P0J0x

and S̃x = Sx− P0J0x = 0. Hence, x ∈ ker S̃, x = J0y by (12) and, therefore,

P0x = P0J0y = P0

∞∑

n=0

PnJnJ0y = P0

∞∑

n=0

PnJnx = 0.

As a result, (I − R)x = (S̃ + P0)x = 0. Since ‖R‖ < 1, we obtain x = 0. Thus,
kerS = {0}, nul S = 0 and S is continuously invertible. Finally, we note that
Jn = S−1PnS, n ∈ Z+, implies Mn = SJnH, n ∈ Z+, which completes the proof.
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De�nition 6 We will say that {φn}∞n=0 is a Riesz basis in H with constant M
provided the sequence of corresponding subspaces {Lin{φn}}∞n=0 forms an
unconditional Schauder decomposition with constant M .

In the case when all the subspaces Mn are one dimensional, we deduce from
Theorem 3 the following stability theorem for Riesz bases in H.

Theorem 4 Let {hn}∞n=0 be an orthonormal basis of H and assume that {φn}∞n=0

is a Riesz basis in H with constant M and corresponding sequence of coordinate
functionals {φ∗n}∞n=0, where φ0 = φ∗0 = h0. Consider a biorthogonal sequence
({ψn}∞n=0, {ψ∗n}∞n=0) in H such that 0 < inf

n
‖ψn‖ ≤ sup

n
‖ψn‖ < ∞. If for all

x ∈ H we have
∞∑

n=1

|〈ψ∗n, x〉〈φ∗n, ψn〉 − 〈φ∗n, x〉|2‖φn‖2 ≤ ς2‖x‖2,

where ς ∈ [0, (2M)−1), then {ψn}∞n=0 is also a Riesz basis of H.

5. Conclusions
We obtain a stability theorem for unconditional Schauder decompositions

in H, which is a generalization of the classical theorem of T. Kato [13]. More
precisely, it is proved that the sequence of mutually disjoint projections, which is
close in some sense to the sequence of projections corresponding to unconditional
Schauder decomposition of given structure, itself generates an unconditional
Schauder decomposition isomorphic to the original. As a direct consequence of this
result, we obtain a stability theorem for Riesz bases. Also we sharpen one stability
theorem of V.N. Vizitei in the case of unconditional Schauder decompositions.

In conclusion, we note the following. Just as Theorem 1 plays a special role
in the study of spectral properties of nonselfadjoint and unbounded operators
in H (see, e.g., [1, 2, 5, 11, 12, 18]), Theorem 2 and Theorem 3 may be very
useful in the analysis of spectral properties of di�erent type operators in H. It is
enough to do the following. We should consider perturbations of nonselfadjoint
operators generating unconditional spectral Schauder decompositions, instead of
perturbations of selfadjoint operators generating an orthogonal spectral Schauder
decompositions. And this, in turn, allows us to extend in qualitative manner the
class of spectral problems which we can solve via known methods.
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